• Title/Summary/Keyword: Backlight system

Search Result 118, Processing Time 0.032 seconds

Human Visual System-aware Dimming Method Combining Pixel Compensation and Histogram Specification for TFT-LCDs

  • Jin, Jeong-Chan;Kim, Young-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5998-6016
    • /
    • 2017
  • In thin-film transistor liquid-crystal displays (TFT-LCDs), which are most commonly used in mobile devices, the backlight accounts for about 70% of the power consumption. Therefore, most low-power-related studies focus on realizing power savings through backlight dimming. Image compensation is performed to mitigate the visual distortion caused by the backlight dimming. Therefore, popular techniques include pixel compensation for brightness recovery and contrast enhancement, such as histogram equalization. However, existing pixel compensation techniques often have limitations with respect to blur owing to the pixel saturation phenomenon, or because contrast enhancement cannot adequately satisfy the human visual system (HVS). To overcome these, in this study, we propose a novel dimming technique to achieve both power saving and HVS-awareness by combining the pixel compensation and histogram specifications, which convert the original cumulative density function (CDF) by designing and using the desired CDF of an image. Because the process of obtaining the desired CDF is customized to consider image characteristics, histogram specification is found to achieve better HVS-awareness than histogram equalization. For the experiments, we employ the LIVE image database, and we use the structural similarity (SSIM) index to measure the degree of visual satisfaction. The experimental results show that the proposed technique achieves up to 15.9% increase in the SSIM index compared with existing dimming techniques that use pixel compensation and histogram equalization in the case of the same low-power ratio. Further, the results indicate that it achieves improved HVS-awareness and increased power saving concurrently compared with previous techniques.

Implementation of Wide-Range Dimming Controller of LED Backlight for Avionics Displays (항공기 디스플레이용 LED Backlight의 광대역 Dimming Controller 구현)

  • Lim, S.H.;Lim, J.G.;Shin, H.B.;Chung, S.K.;Shin, M.J.;Sohn, S.G.
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.53-55
    • /
    • 2007
  • This paper describes an implementation of a wide-range dimming controller of a LED backlight for Avionics applications such as the control data unit(CDU) and multi-function display(MFD). A feedback controller using a light sensor is proposed to control the brightness in the low dimming range. The proposed controller provides an improved control performance in the wide dimming range of 1:3000 even under the temperature variations. The experimental results are provided to show the effectiveness of the proposed control system.

  • PDF

A Wide Color Gamut LCD Module using RGB BLU

  • Hong, Han-Young;Hwang, Hyun-Ha;Jeong, Seok-Hong;Kang, Seung-Gon;Kim, Sung-Ho;Son, Won-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1086-1089
    • /
    • 2006
  • We have developed 2.4" QVGA wide color gamut LCD module using RGB-LED backlight. The color gamut is achieved 100% of NTSC compared to 70% of NTSC when used with White-LED backlight. But RGB LED backlight is difficult to maintain its color balance since RGB LED is gradually degraded by the change of ambient temperature and a long term aging characteristic, etc. This paper describes a feasibility study of our optical feedback system developed for preventing such a color shift.

  • PDF

Heat Dissipation Designs for LED Backlight System; Simulation and Experiment

  • Chiu, Tien-Lung;Tseng, Wet-Yang;Chien, Chin-Cheng;Lo, Wei-Yu;Ting, Chu-Chi;Chang, Chia-Yuan;Chang, Chao-Jen;Sun, Oliver
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.522-524
    • /
    • 2005
  • The LED light source has many excellent advantages for the application of LCD backlight module. As we know, the operational temperature can significantly influence the characteristics of LEDs. Heat can damage the LED 's quality, and decrease its lifetime and output light intensity. In this paper, we perform computer software, Flomerics CFD (Computational Fluid Dynamics), to simulate heat distribution of the 20.1" LED backlight module we designing, and realize how the different heat sinks can solve the serious heat problem in practice.

  • PDF

Charge-Pump High Voltage Inverter for Plasma Backlight with Current Injection Method (CIM(Current Injection Method)을 이용한 Charge-Pump 방식의 Plasma Backlight용 고압 Inverter)

  • Jang, Jun-Ho;Kang, Shin-Ho;Lee, Jun-Young
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.381-383
    • /
    • 2007
  • Charge-pump high voltage inverter for Plasma backlight with CIM(Current Injection Method) is proposed in this paper. Adoption of ERC is a new attempt in high voltage inverter so that it is not only energy recovery but also improvement of discharge stability and system unstability which is interrupted by noise. Using a charge-pump technique enables low voltage switches to be usable, the cost can be reduce. CIM is adopted to achieve high speed energy recovery in proposed circuit. Operations of the proposed circuit are analyzed for each mode. The proposed circuit is verified to be applicable on a 32 inch plasma backlight panel by experimental results.

  • PDF

New High Performance and Low Cost Construction of Unified Power System for LCD TV Backlight Driver Circuitb (LCD TV를 위한 새로운 구조의 고성능 및 저가형 Backlight 구동 전원 통합 시스템)

  • Jang, Doo-Hee;Lee, Jae-Kwang;Roh, Chung-Wook;Hong, Sung-Soo;Kim, Jin-Wook;Lee, Hyo-Bum;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.23-30
    • /
    • 2009
  • A new high performance and low cost unified power system is proposed through investigating conventional Power-Integrated Drive(PID) system and Power-Separated Drive(PSD) system applied to LCD TV. Since the proposed system consists of two stage, namely power and inverter stage it features high efficiency and cost effectiveness. To satisfy the safety standard of the High voltage transformer, 1:1 transformer is employed between inverter and high voltage transformer. Moreover, to ensure the Zero Voltage Switching(ZVS) of all power switches and the Pulse Count Modulation(PCM) method is employed, which controls the number of pulse at the fixed frequency and fixed duty cycle. Therefore, it features high efficiency, improved heat generation, cost effectiveness and good EMI performance including no additional current balancing coil. To confirm the validity of proposed system, comparison of conventional system, verification of experimental results are presented.

Design and manufacture of Inverter for Driving Electrode Fluorescent Lamp (외부전극 형광램프 구동용 인버터 설계 및 제작)

  • Yoon, Dong-han
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.2
    • /
    • pp.76-80
    • /
    • 2013
  • In this paper, a external electrode fluorescent lamp driving inverter for LCD backlight is designed. AC input from a lamp-driven system to process up to two inverter system for the existing configuration of power-efficient than the system as well as to increase the volume and weight reduction, Furthermore low-cost advantage. AC power input in order to drive EEFL stable and AC 85V ~ 265V power factor increase in the PFC Block can be used for running the Inverter Block EEFL and composed.

Design and Implementation of Low-Power GUI for Real-Time Operating System (실시간 운영체제를 위한 저전력 GUI 설계 및 구현)

  • Jeong, Jae-Yeop;Lee, Cheol-Hoon
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.817-821
    • /
    • 2007
  • A technique which uses the energy for a long time have been recognized as a important problem in embedded system with restricted battery. Recently the energy consumption is increased by using a large size of TFT-LCD and touch screen in embedded system. In this paper, we studied the frame buffer monitoring which can be reduced an energy consumption in GUI. The frame buffer monitoring technique is the energy degrade plan which adjusts Refresh-rate and Backlight. The technique must guarantee the quality of screen.

  • PDF

A New Cost-Effective Current-Balancing Multi-Channel LED Driver for a Large Screen LCD Backlight Units

  • Hong, Sung-Soo;Lee, Sang-Hyun;Cho, Sang-Ho;Roh, Chung-Wook;Han, Sang-Kyoo
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.351-356
    • /
    • 2010
  • A new current-balancing multi-channel LED driver is proposed in this paper. The conventional LED driver system consists of three cascaded power conversion stages and its driver stage has the same number of expensive boost converters as those of the LED channels. On the other hand, the proposed LED driver system consists of two cascaded power stages and its driver stage requires only passive devices instead of expensive boost converters. Nevertheless, all of the currents through multi-channel LEDs can be well balanced. Therefore, it features a smaller system size, improved efficiency, and lower cost. To confirm the validity of the proposed driver, its operation and performance are verified on a prototype for a 46" LCD TV.

Development of LED TV Panel Brightness Uniformity Correction System (LED TV 패널 밝기 균일화 보정 시스템 개발)

  • Park, Je Sung;Lee, Won Woo;Jian, Zhangye;Joo, Hyonam;Kim, Joon Seek
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.5
    • /
    • pp.382-388
    • /
    • 2016
  • When Flat Panel Display (FPD) is made with backlight module, such as LED TV, it inherently suffers from the non-uniform backlight luminance problem that results in un-even brightness distribution throughout the TV screen. If the luminance of each pixel location of a TV screen as a function of the driving voltage can be measured, it can be used to compensate the non-uniformity of the backlight module. We use a carefully calibrated imaging system to take pictures of a TV screen at different levels of brightness and generate the compensation functions for the driving circuitry to correct the luminance level at each pixel location. Making use of the fact that the luminance of the screen is normally brightest at around the center of the screen and gradually decreases toward the border of the screen, the luminance of the whole TV screen is approximated by a mathematical function of the pixel locations. The parameters of the function are computed in the least square sense by the values of both the pixel luminance sent from the driving circuit and the grayscale value measured from the image taken by the imaging system. To justify the correction system, a simple second order polynomial function is used to approximate the luminance across the screen. When the driving circuit voltage is corrected according to the measured function, the variance of the screen luminance is reduced to one tenth of the one measured from the un-corrected TV screen.