• Title/Summary/Keyword: Background subtraction method

Search Result 139, Processing Time 0.054 seconds

Layered Object Detection using Adaptive Gaussian Mixture Model in the Complex and Dynamic Environment (혼잡한 환경에서 적응적 가우시안 혼합 모델을 이용한 계층적 객체 검출)

  • Lee, Jin-Hyung;Cho, Seong-Won;Kim, Jae-Min;Chung, Sun-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.387-391
    • /
    • 2008
  • For the detection of moving objects, background subtraction methods are widely used. In case the background has variation, we need to update the background in real-time for the reliable detection of foreground objects. Gaussian mixture model (GMM) combined with probabilistic learning is one of the most popular methods for the real-time update of the background. However, it does not work well in the complex and dynamic backgrounds with high traffic regions. In this paper, we propose a new method for modelling and updating more reliably the complex and dynamic backgrounds based on the probabilistic learning and the layered processing.

Improving Clustering-Based Background Modeling Techniques Using Markov Random Fields (클러스터링과 마르코프 랜덤 필드를 이용한 배경 모델링 기법 제안)

  • Hahn, Hee-Il;Park, Soo-Bin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.157-165
    • /
    • 2011
  • It is challenging to detect foreground objects when background includes an illumination variation, shadow or structural variation due to its motion. Basically pixel-based background models including codebook-based modeling suffer from statistical randomness of each pixel. This paper proposes an algorithm that incorporates Markov random field model into pixel-based background modeling to achieve more accurate foreground detection. Under the assumptions the distance between the pixel on the input imaging and the corresponding background model and the difference between the scene estimates of the spatio-temporally neighboring pixels are exponentially distributed, a recursive approach for estimating the MRF regularizing parameters is proposed. The proposed method alternates between estimating the parameters with the intermediate foreground detection and estimating the foreground detection with the estimated parameters, after computing it with random initial parameters. Extensive experiment is conducted with several videos recorded both indoors and outdoors to compare the proposed method with the standard codebook-based algorithm.

Improved Block-based Background Modeling Using Adaptive Parameter Estimation (적응적 파라미터 추정을 통한 향상된 블록 기반 배경 모델링)

  • Kim, Hanj-Jun;Lee, Young-Hyun;Song, Tae-Yup;Ku, Bon-Hwa;Ko, Han-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.4
    • /
    • pp.73-81
    • /
    • 2011
  • In this paper, an improved block-based background modeling technique using adaptive parameter estimation that judiciously adjusts the number of model histograms at each frame sequence is proposed. The conventional block-based background modeling method has a fixed number of background model histograms, resulting to false negatives when the image sequence has either rapid illumination changes or swiftly moving objects, and to false positives with motionless objects. In addition, the number of optimal model histogram that changes each type of input image must have found manually. We demonstrate the proposed method is promising through representative performance evaluations including the background modeling in an elevator environment that may have situations with rapid illumination changes, moving objects, and motionless objects.

New Scheme for Smoker Detection (흡연자 검출을 위한 새로운 방법)

  • Lee, Jong-seok;Lee, Hyun-jae;Lee, Dong-kyu;Oh, Seoung-jun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.9
    • /
    • pp.1120-1131
    • /
    • 2016
  • In this paper, we propose a smoker recognition algorithm, detecting smokers in a video sequence in order to prevent fire accidents. We use description-based method in hierarchical approaches to recognize smoker's activity, the algorithm consists of background subtraction, object detection, event search, event judgement. Background subtraction generates slow-motion and fast-motion foreground image from input image using Gaussian mixture model with two different learning-rate. Then, it extracts object locations in the slow-motion image using chain-rule based contour detection. For each object, face is detected by using Haar-like feature and smoke is detected by reflecting frequency and direction of smoke in fast-motion foreground. Hand movements are detected by motion estimation. The algorithm examines the features in a certain interval and infers that whether the object is a smoker. It robustly can detect a smoker among different objects while achieving real-time performance.

Efficient Learning and Classification for Vehicle Type using Moving Cast Shadow Elimination in Vehicle Surveillance Video (차량 감시영상에서 그림자 제거를 통한 효율적인 차종의 학습 및 분류)

  • Shin, Wook-Sun;Lee, Chang-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.15B no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Generally, moving objects in surveillance video are extracted by background subtraction or frame difference method. However, moving cast shadows on object distort extracted figures which cause serious detection problems. Especially, analyzing vehicle information in video frames from a fixed surveillance camera on road, we obtain inaccurate results by shadow which vehicle causes. So, Shadow Elimination is essential to extract right objects from frames in surveillance video. And we use shadow removal algorithm for vehicle classification. In our paper, as we suppress moving cast shadow in object, we efficiently discriminate vehicle types. After we fit new object of shadow-removed object as three dimension object, we use extracted attributes for supervised learning to classify vehicle types. In experiment, we use 3 learning methods {IBL, C4.5, NN(Neural Network)} so that we evaluate the result of vehicle classification by shadow elimination.

Rule-based Detection of Vehicles in Traffic Scenes (교통영상에서의 규칙에 기반한 차량영역 검출기법)

  • Park, Young-Tae
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.3
    • /
    • pp.31-40
    • /
    • 2000
  • A robust scheme of locating and counting the number of vehicles m urban traffic scenes, a core component of vision-based traffic monitoring systems, is presented The method is based on the evidential reasoning, where vehicle evidences m the background subtraction Image are obtained by a new locally optimum thresholding, and the evidences are merged by three heuristic rules using the geometric constraints The locally optimum thresholding guarantees the separation of bright and dark evidences of vehicles even when the vehicles are overlapped or when the vehicles have similar color to the background Experimental results on diverse traffic scenes show that the detection performance is very robust to the operating conditions such as the camera location and the weather The method may be applied even when vehicle movement is not observed since a static Image IS processed without the use of frame difference.

  • PDF

Dynamic Training Algorithm for Hand Gesture Recognition System (손동작 인식 시스템을 위한 동적 학습 알고리즘)

  • Kim, Moon-Hwan;hwang, suen ki;Bae, Cheol-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.2
    • /
    • pp.51-56
    • /
    • 2009
  • We developed an augmented new reality tool for vision-based hand gesture recognition in a camera-projector system. Our recognition method uses modified Fourier descriptors for the classification of static hand gestures. Hand segmentation is based on a background subtraction method, which is improved to handle background changes. Most of the recognition methods are trained and tested by the same service-person, and training phase occurs only preceding the interaction. However, there are numerous situations when several untrained users would like to use gestures for the interaction. In our new practical approach the correction of faulty detected gestures is done during the recognition itself. Our main result is the quick on-line adaptation to the gestures of a new user to achieve user-independent gesture recognition.

  • PDF

Dynamic Training Algorithm for Hand Gesture Recognition System (손동작 인식 시스템을 위한 동적 학습 알고리즘)

  • Bae, Cheol-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.7
    • /
    • pp.1348-1353
    • /
    • 2007
  • We developed an augmented new reality tool for vision-based hand gesture recognition in a camera-projector system. Our recognition method uses modified Fourier descriptors for the classification of static hand gestures. Hand segmentation is based on a background subtraction method, which is improved to handle background changes. Most of the recognition methods are trained and tested by the same service-person, and training phase occurs only preceding the interaction. However, there are numerous situations when several untrained users would like to use gestures for the interaction. In our new practical approach the correction of faulty detected gestures is done during the recognition itself. Our main result is the quick on-line adaptation to the gestures of a new user to achieve user-independent gesture recognition.

Pest Control System using Deep Learning Image Classification Method

  • Moon, Backsan;Kim, Daewon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.9-23
    • /
    • 2019
  • In this paper, we propose a layer structure of a pest image classifier model using CNN (Convolutional Neural Network) and background removal image processing algorithm for improving classification accuracy in order to build a smart monitoring system for pine wilt pest control. In this study, we have constructed and trained a CNN classifier model by collecting image data of pine wilt pest mediators, and experimented to verify the classification accuracy of the model and the effect of the proposed classification algorithm. Experimental results showed that the proposed method successfully detected and preprocessed the region of the object accurately for all the test images, resulting in showing classification accuracy of about 98.91%. This study shows that the layer structure of the proposed CNN classifier model classified the targeted pest image effectively in various environments. In the field test using the Smart Trap for capturing the pine wilt pest mediators, the proposed classification algorithm is effective in the real environment, showing a classification accuracy of 88.25%, which is improved by about 8.12% according to whether the image cropping preprocessing is performed. Ultimately, we will proceed with procedures to apply the techniques and verify the functionality to field tests on various sites.

Ozone Monitoring in the Lower Tropospheric Atmosphere by LIDAR System (라이다 시스템을 이용한 하층 대류권 오존농도 측정)

  • 최성철;차형기;김덕현;김영상
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.5
    • /
    • pp.385-393
    • /
    • 2001
  • We have developed a Differential Absortion LIDAR (DIAL) method for the measurement of lower tropospheric ozone concentration. We used two laser beams from quadrupled Nd:YAG (266 nm) for the resonance wavelength and dye lasers (299.5 nm) for non -resonance wavelength. Aerosol extinction coefficients in the lower troposphere was computed by both Klett and Slope methods. To correct the SIN (Signal -Induced Noise) effect caused by photo detector, we subtracted a new-fitted baseline on the background part of a LIDAR signal, after the subtraction of the DC level. This is because SIN can be treated as an exponentially decaying tail. Using theme results, ozone profiles were obtained approximately 2km at daytime and 3km at nighttime. We compared the results derided by the Slope method with those measured by UV spectrometer. The computed results are in mostly good agreement with experimental results. In the measurement of the vertical layer, we observed the variation of the ozone profiles around the top mixed layer.

  • PDF