• Title/Summary/Keyword: Background bacteria

Search Result 227, Processing Time 0.028 seconds

Assessment of Korean Paddy Soil Microbial Community Structure by Use of Quantitative Real-time PCR Assays (한국의 논 토양 미생물 다양성 분석을 위한 Quantitative Real-time PCR의 응용)

  • Choe, Myeong-Eun;Lee, In-Jung;Shin, Jae-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.4
    • /
    • pp.367-376
    • /
    • 2011
  • BACKGROUND: In order to develop effective assessment method for Korean paddy soil microbial community structure, reliable genomic DNA extraction method from paddy soil and quantitative real-time PCR (qRT-PCR) method are needed to establish METHODS AND RESULTS: Out of six conventional soil genomic DNA extraction methods, anion exchange resin purification method was turn to be the most reliable. Various PCR primers for distinguishing five bacterial phylum (${\alpha}$-Proteobacteria, ${\beta}$-Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes), all bacteria, and all fungi were tested. Various qRT-PCR temperature conditions were also tested by repeating experiment. Finally, both genomic DNA extraction and qRT-PCR methods for paddy soil were well established. CONCLUSION: Quantitative real-time PCR (qRT-PCR) method to assess paddy soil microbial community was established.

Successful treatment of recurrent subclinical mastitis in cows caused by enrofloxacin resistant bacteria by means of the sequential intramammary infusion of enrofloxacin HCl-2H2O and ceftiofur HCl: a clinical trial

  • Alfonseca-Silva, Edgar;Cruz-Villa, Juan Carlos;Gutierrez, Lilia;Sumano, Hector
    • Journal of Veterinary Science
    • /
    • v.22 no.6
    • /
    • pp.78.1-78.10
    • /
    • 2021
  • Background: Recurrent subclinical mastitis (RScM) due to resistant bacteria has low clinical and bacteriological cure rates, often requiring the culling of cows. The sequential intramammary administration of enrofloxacin hydrochloride-dihydrate (enro-C) followed by ceftiofur HCl may be useful for treating these cases. Objectives: This study assessed the bacteriological and clinical cure-efficacies of the sequentially intramammary administration of enro-C, followed by ceftiofur HCl to treat RScM in Holstein/Friesian cows. Methods: This trial was conducted in a herd with a high prevalence of RScM, and 20 Holstein/Friesian cows were included: 45% suffering subclinical mastitis and 38.9% of the mammary quarters affected. Twenty-nine bacterial isolates in vitro resistant to enro-C were obtained (coagulase-negative Staphylococcus spp, 55.2%; Staphylococcus aureus, 27.6%; Escherichia coli, 6.9%; Streptococcus uberis, 6.9%; Corynebacterium bovis, 3.4%). Polymerase chain reaction-isolated the following genes linked to enro-C resistance: chromosomal (gyrA) and plasmid (aac(6')-lb-cr). The treatments were as follows: twice-daily intramammary infusions of enro-C (300 mg/10 mL) for 5 days. Cows clinically considered treatment failures were also treated with intramammary ceftiofur (125 mg/10 mL, twice daily for 5 days. The clinical and bacteriological cure rates were carried out when completing each treatment phase and at 14 and 21 days, aided by a California mastitis test, somatic cell count, and failure to identify the initially causative bacteria. Results: Enro-C achieved 65% clinical and bacteriological cure rates, and 100% cure rates were obtained after the rescue treatment with ceftiofur HCl. Conclusions: Outstanding clinical and bacteriological cure rates in cows affected by RScM were achieved with the consecutive intramammary infusions of enro-C, followed by ceftiofur HCl.

Safety of Temporary Use of Recycled Autoclaved Femoral Components in Infected Total Knee Arthroplasty: Confirming Sterility Using a Sonication Method

  • Park, Hyung-Jin;Kim, Hee-June;Kim, Shukho;Kim, Seong-Min;Mun, Jong-Uk;Kim, Jungmin;Kyung, Hee-Soo
    • Clinics in Orthopedic Surgery
    • /
    • v.10 no.4
    • /
    • pp.427-432
    • /
    • 2018
  • Background: The purpose of this study was to evaluate the usefulness of sonication technique for microbiological diagnosis and the sterility of the recycled autoclaved femoral components from infected total knee arthroplasty (TKA) using a sonication method. Methods: Nineteen femoral implants explanted from patients with infected TKA were sterilized with a standard autoclave method. Standard culture of the fluid before and after sonication of the sterilized implants was performed to detect pathogenic microorganisms. Additional experiments were performed to evaluate the sterility of the recycled implant by inducing artificial biofilm formation. Methicillin-resistant Staphylococcus aureus (MRSA) was inoculated into 10 implants and sterilization in a standard autoclave was performed, and then the fluid was cultured before and after sonication. Results: Two of the 19 sterilized implants were positive for growth of bacteria after sonication, whereas no growth was detected in the cultured fluid from the sterilized implants before sonication. The bacteria were Staphylococcus species in all two cases. In one of 10 implants inoculated with MRSA, the culture was positive for growth of bacteria both before and after sonication. However, Staphylococcus epidermidis was cultured from both occasions and thus this implant was thought to be contaminated. Conclusions: We found sonication for identification of pathogens could be helpful, but this finding should be interpreted carefully because of the possibility of contamination. Sterilization of an infected femoral implant with an autoclave method could be a good method for using the temporary articulating antibiotic spacer in two-stage revision arthroplasty.

Physicochemical Properties and Antioxidant Activity of Extract from Astragalus membranaceus Bunge Leaf Fermented with Lactic Acid Bacteria (유산균으로 발효한 황기 잎 추출물의 이화학적 특성 및 항산화 활성)

  • Song, Bit Na;Lee, Da Bin;Lee, Sung Hyun;Park, Bo Ram;Choi, Ji Ho;Kim, Yong Suk;Park, Shin Young
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.6
    • /
    • pp.428-434
    • /
    • 2020
  • Background: This study aimed to investigate the quality characteristics of Astragalus membranaceus Bunge leaf (AMBL) fermented with lactic acid bacteria and the applicability of its biologically active compounds. Methods and Results: An assessment of physicochemical properties such as pH, total acidity, free sugars, and isoflavonoid (calycosin-7-o-β-d-glucoside, ononin, calycosin, and formononetin) was conducted. Furthermore, the levels of antioxidant compounds, including polyphenols and flavonoids, and radical scavenging activities of the extracts using 2,2-Diphenyl-1-picryl-hydrazyl-hydrate and 2,2-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) were investigated. The calycosin content in the water extract of AMBL fermented with Leuconostoc mesenteroides increased by approximately twice as much as the control. Conclusions: These results indicate that L. mesenteroides can be used to improve biological activity through fermentation, and that AMBL can be used as a functional materials and edible resource in industrial areas.

Short-Term Changes in Gut Microflora and Intestinal Epithelium in X-Ray Exposed Mice

  • Tsujiguchi, Takakiyo;Yamaguchi, Masaru;Yamanouchi, Kanako
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.4
    • /
    • pp.163-170
    • /
    • 2020
  • Background: Gut microflora contributes to the nutritional metabolism of the host and to strengthen its immune system. However, if the intestinal barrier function of the living body is destroyed by radiation exposure, the intestinal bacteria harm the health of the host and cause sepsis. Therefore, this study aims to trace short-term radiation-induced changes in the mouse gut microflora-dominant bacterial genus, and analyze the degree of intestinal epithelial damage. Materials and Methods: Mice were irradiated with 0, 2, 4, 8 Gy X-rays, and the gut microflora and intestinal epithelial changes were analyzed 72 hours later. Five representative genera of Actinobacteria, Firmicutes, and Bacteroidetes were analyzed in fecal samples, and the intestine was pathologically analyzed by Hematoxylin-Eosin and Alcian blue staining. In addition, DNA fragmentation was evaluated by the TdT-mediated dUTP nick-end labeling (TUNEL) assay. Results and Discussion: The small intestine showed shortened villi and reduced number of goblet cells upon 8 Gy irradiation. The large intestine epithelium showed no significant morphological changes, but the number of goblet cells were reduced in a radiation dose-dependent manner. Moreover, the small intestinal epithelium of 8 Gy-irradiated mice showed significant DNA damaged, whereas the large intestine epithelium was damaged in a dose-dependent manner. Overall, the large intestine epithelium showed less recovery potential upon radiation exposure than the small intestinal epithelium. Analysis of the intestinal flora revealed fluctuations in lactic acid bacteria excretion after irradiation regardless of the morphological changes of intestinal epithelium. Altogether, it became clear that radiation exposure could cause an immediate change of their excretion. Conclusion: This study revealed changes in the intestinal epithelium and intestinal microbiota that may pave the way for the identification of novel biomarkers of radiation-induced gastrointestinal disorders and develop new therapeutic strategies to treat patients with acute radiation syndrome.

Study of pathogenicity and severity of Lactococcus garvieae isolated from rainbow trout (Oncorhynchus mykiss) farms in Kohkilooieh and Boyerahmad province

  • Karami, Esmaeil;Alishahi, Mojtaba;Molayemraftar, Taravat;Ghorbanpour, Masoud;Tabandeh, Mohammad Reza;Mohammadian, Takavar
    • Fisheries and Aquatic Sciences
    • /
    • v.22 no.10
    • /
    • pp.21.1-21.7
    • /
    • 2019
  • Background: Lactococcus garvieae is one of the most important risk factors in the rainbow trout culture. Therefore, the purpose of this study was to identify and detect strains isolated from rainbow trout suspected of having Lactococcus garvieae using biochemical characteristics and PCR and determination of the degree of severity of isolated strains. Methods: In this study, the cause of lactococcosis in selected rainbow trout farms in Kohkilooieh and Boyerahmad province was assayed. Gram-positive and catalase-negative bacterial isolates were first obtained from selected trout fish farms using conventional biochemical tests and PCR assay. The 10-day LD50 method (concentration causing 50% mortality in 10 days) was used to determine the severity of the isolated bacteria. Results: One bacterial isolate was detected from all sampled fish which confirmed as Lactococcus garvieae using a specific PCR assay based on the 16S rDNA gene by producing a single band of 1107 bp. Analysis of the rate of mortality showed that the 10-day LD50 was 4.6 × 105 CFU/fish. The results of this study showed that isolated bacteria had high severity for rainbow trout. The presence of bacteria in internal organs of suspected fish showed a severe systemic infection in challenged fish. Antibiogram assay also indicated that the isolated Lactococcus garvieae were resistant to some mostly used antibiotics in rainbow trout. Conclusions: According to current research, it can be concluded that the condition of lactococcosis in the studied area is not suitable, and despite the presence of disease, there is no proper action to control and prevent the disease. Unfortunately, isolated bacteria from the studied area have a very high severity compared to bacteria isolated from other regions of the country or other countries. Therefore, further investigation is needed to determine the cause of this difference and possibly in the design of the vaccine.

Diversity, distribution, and antagonistic activities of rhizobacteria of Panax notoginseng

  • Fan, Ze-Yan;Miao, Cui-Ping;Qiao, Xin-Guo;Zheng, You-Kun;Chen, Hua-Hong;Chen, You-Wei;Xu, Li-Hua;Zhao, Li-Xing;Guan, Hui-Lin
    • Journal of Ginseng Research
    • /
    • v.40 no.2
    • /
    • pp.97-104
    • /
    • 2016
  • Background: Rhizobacteria play an important role in plant defense and could be promising sources of biocontrol agents. This study aimed to screen antagonistic bacteria and develop a biocontrol system for root rot complex of Panax notoginseng. Methods: Pure-culture methods were used to isolate bacteria from the rhizosphere soil of notoginseng plants. The identification of isolates was based on the analysis of 16S ribosomal RNA (rRNA) sequences. Results: A total of 279 bacteria were obtained from rhizosphere soils of healthy and root-rot notoginseng plants, and uncultivated soil. Among all the isolates, 88 showed antagonistic activity to at least one of three phytopathogenic fungi, Fusarium oxysporum, Fusarium solani, and Phoma herbarum mainly causing root rot disease of P. notoginseng. Based on the 16S rRNA sequencing, the antagonistic bacteria were characterized into four clusters, Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetesi. The genus Bacillus was the most frequently isolated, and Bacillus siamensis (Hs02), Bacillus atrophaeus (Hs09) showed strong antagonistic activity to the three pathogens. The distribution pattern differed in soil types, genera Achromobacter, Acidovorax, Brevibacterium, Brevundimonas, Flavimonas, and Streptomyces were only found in rhizosphere of healthy plants, while Delftia, Leclercia, Brevibacillus, Microbacterium, Pantoea, Rhizobium, and Stenotrophomonas only exist in soil of diseased plant, and Acinetobacter only exist in uncultivated soil. Conclusion: The results suggest that diverse bacteria exist in the P. notoginseng rhizosphere soil, with differences in community in the same field, and antagonistic isolates may be good potential biological control agent for the notoginseng root-rot diseases caused by F. oxysporum, Fusarium solani, and Panax herbarum.

A Study on Microbial Community Diversity and Antibiotic Resistance in Public Waters in Gwangju (광주지역 공공수역의 미생물 군집 다양성 및 항생제 내성에 관한 연구)

  • Sun-Jung Kim;Ji-Young Park;Seung-Ho Kim;Min-Hwa Lim;Ji-Yong Yu;Kyu-Sung Han;Se-Il Park;Gwangyeob Seo;Gwangwoon Cho
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.2
    • /
    • pp.93-101
    • /
    • 2024
  • Background: As pollutants caused by non-point sources flow into rivers, river water quality monitoring for fecal pollution is becoming increasingly important. Objectives: This study was conducted to investigate the distribution of microbial communities in the Yeongsangang River water system and sewage treatment plants in Gwangju and to evaluate their antibiotic resistance. Methods: In the experiment, samples were distributed to five selective media at each point and then cultured for 18 to 24 hours. When bacteria were observed, they were sub-cultured by size and shape and identified using MALDI-TOF MS equipment. When identification was completed, 17 types of antibiotic susceptibility tests were performed using VITEK II equipment, focusing on gram-negative dominant species among the identified strains. Results: During the study period, a total of 266 strains were isolated from 39 samples. Gram-positive bacteria were 37 strains in four genera, or 13.9% of the total, and Gram-negative bacteria were 229 strains in 23 genera, or 86.1% of the total. Antibiotic susceptibility testing of 23 strains, the major dominant species, showed that one strain (4.3%) was resistant to only one antibiotic, and two strains (8.7%) were 100% susceptible to the 17 antibiotics tested. The other 20 strains (87.0%) were multidrug resistant bacteria resistant to two or more antibiotics. There were various types of multidrug resistance. Among them, penicillin and cephalosporin series showed the highest resistance. Conclusions: Based on the results of this study, it was found that the bacterial community structure changed according to regional and environmental factors, and it was judged that continuous research such as genetic analysis of antibiotic-resistant bacteria present in natural rivers is necessary.

Elucidation of Bacterial Pneumonia-Causing Pathogens in Patients with Respiratory Viral Infection

  • Jung, Hwa Sik;Kang, Byung Ju;Ra, Seung Won;Seo, Kwang Won;Jegal, Yangjin;Jun, Jae-Bum;Jung, Jiwon;Jeong, Joseph;Jeon, Hee-Jeong;Ahn, Jae-Sung;Lee, Taehoon;Ahn, Jong Joon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.80 no.4
    • /
    • pp.358-367
    • /
    • 2017
  • Background: Bacterial pneumonia occurring after respiratory viral infection is common. However, the predominant bacterial species causing pneumonia secondary to respiratory viral infections other than influenza remain unknown. The purpose of this study was to know whether the pathogens causing post-viral bacterial pneumonia vary according to the type of respiratory virus. Methods: Study subjects were 5,298 patients, who underwent multiplex real-time polymerase chain reaction for simultaneous detection of respiratory viruses, among who visited the emergency department or outpatient clinic with respiratory symptoms at Ulsan University Hospital between April 2013 and March 2016. The patients' medical records were retrospectively reviewed. Results: A total of 251 clinically significant bacteria were identified in 233 patients with post-viral bacterial pneumonia. Mycoplasma pneumoniae was the most frequent bacterium in patients aged <16 years, regardless of the preceding virus type (p=0.630). In patients aged ${\geq}16years$, the isolated bacteria varied according to the preceding virus type. The major results were as follows (p<0.001): pneumonia in patients with influenza virus (type A/B), rhinovirus, and human metapneumovirus infections was caused by similar bacteria, and the findings indicated that Staphylococcus aureus pneumonia was very common in these patients. In contrast, coronavirus, parainfluenza virus, and respiratory syncytial virus infections were associated with pneumonia caused by gram-negative bacteria. Conclusion: The pathogens causing post-viral bacterial pneumonia vary according to the type of preceding respiratory virus. This information could help in selecting empirical antibiotics in patients with post-viral pneumonia.

Isolation and Degradation Activity of a TBTCl (Tributyltin Chloride) Resistant Bacteriain Gwangyang Bay (광양만에서 TBTCl (Tributyltin Chloride) 내성세균의 분리 및 분해활성)

  • Jeong, Seong-Yun;Son, Hong-Joo;Jeoung, Nam-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.4
    • /
    • pp.424-431
    • /
    • 2011
  • BACKGROUND: Tributyltin chloride is among the most toxic compounds known for aquatic ecosystems. Microorganisms are responsible for removal of TBTCl. Nevertheless, only a limited number of marine bacteria were investigated for biodegradation of TBTCl in Korea. METHODS AND RESULTS: The number of TBTCl resistant bacteria ranged from $2.5{\times}10^3$ to $3.8{\times}10^3$ cfu/mL in the seawater, and ranged from $3.2{\times}10^5$ to $9.1{\times}10^5$ cfu/g in the surface sediment, respectively. The morphological, physiological, and biochemical characteristics of TBTCl resistant bacteria were investigated by API 20NE and other tests. The most abundant species of TBTCl resistant bacteria were Vibrio spp. (19.2%), Bacillus spp. (16.2%), Aeromonas spp. (15.2%), and Pseudomonas spp. (13.1%), etc. Eleven TBTCl resistant isolates also had a resistance to heavy metals (Cd, Cu, Hg, and Zn). Among them, isolate T7 showing the strong TBTCl-resistance was selected. This isolate was identified as the genus Pantoea by 16S rRNA gene sequencing and designated as Pantoea sp. T7. In addition, this bacterium was cultivated up to the growth of 50.7% after 60 hrs at TBTCl concentration of $500{\mu}M$. TBTCl-degrading activity of Pantoea sp. T7 was measured by GC-FPD analysis. As a result of biological TBTCl-degradation at TBTCl concentration of $100{\mu}M$, TBTCl-removal efficiency of Pantoeasp. T7 was 62.7% after 40 hrs. CONCLUSION(S): These results suggest that Pantoea sp. T7 is potentially useful for the bioremediation of TBT contamination.