• 제목/요약/키워드: Back-propagation neural networks

검색결과 437건 처리시간 0.026초

K1-궤도차량의 운동제어를 위한 퍼지-뉴럴제어 알고리즘 개발 (Development of Fuzzy-Neural Control Algorithm for the Motion Control of K1-Track Vehicle)

  • 한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 추계학술대회 논문집
    • /
    • pp.70-75
    • /
    • 1997
  • This paper proposes a new approach to the design of fuzzy-neuro control for track vehicle system using fuzzy logic based on neural network. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based of independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is illustrated by simulation for trajectory tracking of track vehicle speed.

  • PDF

궤도차량의 동적 제어를 위한 퍼지-뉴런 제어 알고리즘 개발 (Development of a Neural-Fuzzy Control Algorithm for Dynamic Control of a Track Vehicle)

  • 서운학
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.142-147
    • /
    • 1999
  • This paper presents a new approach to the dynamic control technique for track vehicle system using neural network-fuzzy control method. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by simulation for trajectory tracking of the speed and azimuth of a track vehicle.

  • PDF

이동형 로보트의 속도 및 방향제어를 위한 퍼지-신경제어기 설계 (The Design of Fuzzy-Neural Controller for Velocity and Azimuth Control of a Mobile Robot)

  • 한성현;이희섭
    • 한국정밀공학회지
    • /
    • 제13권4호
    • /
    • pp.75-86
    • /
    • 1996
  • In this paper, we propose a new fuzzy-neural network control scheme for the speed and azimuth control of a mobile robot. The proposed control scheme uses a gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the frame-work of the specialized learning architecture. It is proposed a learning controller consisting of two fuzzy-neural networks based on independent reasoning and a connection net woth fixed weights to simply the fuzzy-neural network. The effectiveness of the proposed controller is illustrated by performing the computer simulation for a circular trajectory tracking of a mobile robot driven by two independent wheels.

  • PDF

Effective Prediction of Thermal Conductivity of Concrete Using Neural Network Method

  • Lee, Jong-Han;Lee, Jong-Jae;Cho, Baik-Soon
    • International Journal of Concrete Structures and Materials
    • /
    • 제6권3호
    • /
    • pp.177-186
    • /
    • 2012
  • The temperature distributions of concrete structures strongly depend on the value of thermal conductivity of concrete. However, the thermal conductivity of concrete varies according to the composition of the constituents and the temperature and moisture conditions of concrete, which cause difficulty in accurately predicting the thermal conductivity value in concrete. For this reason, in this study, back-propagation neural network models on the basis of experimental values carried out by previous researchers have been utilized to effectively account for the influence of these variables. The neural networks were trained by 124 data sets with eleven parameters: nine concrete composition parameters (the ratio of water-cement, the percentage of fine and coarse aggregate, and the unit weight of water, cement, fine aggregate, coarse aggregate, fly ash and silica fume) and two concrete state parameters (the temperature and water content of concrete). Finally, the trained neural network models were evaluated by applying to other 28 measured values not included in the training of the neural networks. The result indicated that the proposed method using a back-propagation neural algorithm was effective at predicting the thermal conductivity of concrete.

Evolutionary designing neural networks structures using genetic algorithm

  • Itou, Minoru;Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.43.2-43
    • /
    • 2001
  • In this paper, we consider the problems of the evolutionary designed neural networks structures by genetic algorithm. Neural networks has been applied to various application fields since back-propagation algorithm was proposed, e.g. function approximation, pattern or character recognition and so on. However, one of difficulties to use the neural networks. It is how to design the structure of the neural network. Researchers and users design networks structures and training parameters such as learning rate and momentum rate and so on, by trial and error based on their experiences. In the case of designing large scales neural networks, it is very hard work for manually design by try and error. For this difficulty, various structural learning algorithms have been proposed. Especially, the technique of using genetic algorithm for networks structures design has been ...

  • PDF

보로노이 공간분류를 이용한 오류 역전파 신경망의 설계방법 (A Design Method for Error Backpropagation neural networks using Voronoi Diagram)

  • 김홍기
    • 한국지능시스템학회논문지
    • /
    • 제9권5호
    • /
    • pp.490-495
    • /
    • 1999
  • 본 논문에서는 보로노이 다이아그램을 이용하여 오류 역전파 신경망의 초기값을 결정할수 있는 VoD_EBP를 제안하였다. VoD_EBP는 초기 연결 가중치와 임계값을 공학적 계산방법으로 결정함으로써 기존의 EBP에서 자주 발생하는 학습 마비 현상을 피할수 있고 초기부터 빠른 속도로 학습이 진행되므로 학습횟수를 단축시킬수 있다, 또한 VoD_EBP는 은닉층의 노드 수를 보로노이 다각형으로 구분된 클러스터들의 개수로 정할 수있어 신경망 설계에 신뢰성을 향상시켰다. 제시된 VoD_EBP의 효율성을 입증하기 위해 간단한 실험으로 2차원 입력벡터를 갖는 XOR 문제와 3차원 패리티 코드 검출 문제에 대하여 적용하여 보았다. 그 결과 임의의 초기값으로 설정하였던 EBP보다 훨씬 빠르게 학습이 종료되었고, 지역 최소치에 빠져 학습이 진행되지 못하는 현상이 발생하지 않았다.

  • PDF

퍼지 로직에 의한 궤도차량의 지능제어시스템 설계 (Intelligent control system design of track vehicle based-on fuzzy logic)

  • 김종수;한성현;조길수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.131-134
    • /
    • 1997
  • This paper presents a new approach to the design of intelligent control system for track vehicle system using fuzzy logic based on neural network. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is illustrated by simulation for trajectory tracking of track vehicle speed.

  • PDF

퍼지-뉴럴 제어기법에 의한 이동형 로봇의 자세 제어 (Orientation Control of Mobile Robot Using Fuzzy-Neural Control Technique)

  • 김종수
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 추계학술대회 논문집
    • /
    • pp.82-87
    • /
    • 1997
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

뉴럴-퍼지제어기법에 의한 두 구동휠을 갖는 이동형 로보트의 자세 및 속도 제어 (The Azimuth and Velocity Control of a Mobile Robot with Two Drive Wheels by Neural-Fuzzy Control Method)

  • 조용길;배종일
    • 동력기계공학회지
    • /
    • 제2권3호
    • /
    • pp.74-82
    • /
    • 1998
  • This paper presents a new approach to the design of speed and azimuth control of a mobile robot with two drive wheels. The proposed control scheme uses a Gaussian function as a unit function in the neural-fuzzy network and back propagation algorithm to train the neural-fuzzy network controller in the framework of the specialized learning architecture. It is proposed to a learned controller with two neural-fuzzy networks based on an independent reasoning and a connection net with fixed weights to simplify the neural-fuzzy network. The performance of the proposed controller can be seen by the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

TMS320C3x 칩을 이용한 로보트 매뉴퓰레이터의 실시간 신경 제어기 실현 (Implementation of a real-time neural controller for robotic manipulator using TMS 320C3x chip)

  • 김용태;한성현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.65-68
    • /
    • 1996
  • Robotic manipulators have become increasingly important in the field of flexible automation. High speed and high-precision trajectory tracking are indispensable capabilities for their versatile application. The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. This paper presents a new approach to the design of neural control system using digital signal processors in order to improve the precision and robustness. The TMS32OC31 is used in implementing real time neural control to provide an enhanced motion control for robotic manipulators. In this control scheme, the networks introduced are neural nets with dynamic neurons, whose dynamics are distributed over all the, network nodes. The nets are trained by the distributed dynamic back propagation algorithm. The proposed neural network control scheme is simple in structure, fast in computation, and suitable for implementation of real-time, control. Performance of the neural controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF