• Title/Summary/Keyword: Back-plate

Search Result 357, Processing Time 0.027 seconds

A New Manufacturing Process for the Ring Plate of Automotive Fuel Tank (자동차 연료탱크용 링 플레이트의 신 제조공법)

  • Chae, M.S.;Lim, Y.H.;Suh, Y.S.;Park, C.D.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.5
    • /
    • pp.350-355
    • /
    • 2008
  • Currently, in the automotive industry, the efforts to reduce the manufacturing cost by changing the manufacturing process are continually performed. In this paper, we proposed a new manufacturing process, the roll bending process of a ring plate of automotive fuel tank instead of conventional press blanking process to reduce material loss and manufacturing cost. Finite element analysis was used to optimize the roll bending process to assure rectangular cross-section of the ring plate. Also, spring-back analysis after the roll bending process was performed and dimension of the bending die considering spring-back was analyzed. Finally, we verified a possibility for realization of the proposed method with prototypes.

Roll deformation and wear analysis of backup roll in heavy plate mill (후판압연의 백업롤 변형해석 및 마모특성 분석)

  • Seo, Jae-Hyung;Gho, Sung-Hyun;Moon, Chang-Ho;Chun, Myung-Sik;Park, Hae-Doo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.04a
    • /
    • pp.62-64
    • /
    • 2009
  • Control of back-up roll deformation and wear profile in plate rolling is important not only for enhancement of the structural precision of mill, but also for improving the yield and rolling operation. in the heavy plate mill, there have been strong demands for upgrading back up roll operation technology. In order to satisfy these demands, it is essential to develop the backup roll deformation analysis models and wear profile prediction models. This paper gives a general description of the backup roll deformation and wear model, simulation result for deformation analysis and wear profile.

  • PDF

A New Manufacturing Process for the Ring Plate of Automobile Fuel Tank (자동차 연료탱크용 링 플레이트의 신 제조공법)

  • Chae, M.S.;Lim, Y.H.;Suh, Y.S.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.311-315
    • /
    • 2008
  • Currently, in automobile industry. the efforts to reduce the manufacturing cost by changing the process of manufacturing are continually performed. In this paper, we proposed a new manufacturing process, the roll bending of a ring plate of automotive fuel tank instead of conventional press blanking process to reduce material loss and manufacturing cost. Finite element analysis was used to optimize the roll bending process to assure rectangular cross-section of the ring plate. Also, spring-back analysis after the roll bending was performed and dimension of the bending die considering spring-back was analyzed. Finally, we verified a possibility for realization of the proposed method shape with prototypes.

  • PDF

An Evaluation Method of Deformation Moduli using Finite Element Analysis of Cyclic Plate Load Tests (반복재하 평판재하시험의 유한요소해석을 이용한 변형계수의 추정기법)

  • Oh, Seboong;Seo, Wonseok;Kwon, Ohkyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.61-68
    • /
    • 2007
  • The problem on cyclic plate load tests was analyzed by finite element method using an anisotropic hardening constitutive model. The constitutive model was coded to user subroutine in ABAQUS. Using the result of the analysis, Young's moduli corresponding to various strain levels were evaluated by a back calculation method and were very similar to those of input. On the basis of the back calculation method plate loading tests were verified. As a result, deformation moduli could be evaluated practically from cyclic plate load tests with respect site conditions.

  • PDF

Estimation of deformation modulus for rock mass using stress distribution under ground in Large Plate Load Test (대형평판재하시험의 지중응력 측정결과를 이용한 연암의 변형계수 산정)

  • Park, Won-Tae;Lee, Min-Hee;Choi, Yong-Kyu;Kim, Seok-Chan;Kim, Jung-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.539-545
    • /
    • 2010
  • The field plate test has a good potential for determining since it measures both plate pressure and settlement. The deformation modulus of rock mass is differently measured for status of structures. The values of deformation modulus are obtained from laboratory test (uniaxial and triaxial test) and field test (pressuremeter test). Plate load test should be conducted by different loading plate sizes for geological structure of rock mass and scale of structures. In this paper, large plate load tests were performed to predict of structure's behavior and evaluate the ultimate bearing capacity of the foundation on soft rock. Simultaneously, deformation modulus of rock mass was estimated by back analysis of stresses measured in field test under rock mass. Finally, we verified the validation of deformation modulus of rock mass through result of large plate load test and numerical simulation.

  • PDF

Experimental Study on the Interface Bonding Characteristics of a Pin-bushing Bearing (핀부시 베어링 소재의 계면접합특성에 관한 실험적 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.315-319
    • /
    • 2008
  • This paper presents the interface bonding characteristics between a phosphor bronze and a steel plate for pin-bush bearings. The pin-bush bearing is an important component in which is used to reduce a friction loss and a wear against the piston pin. The pin-bush bearing is manufactured by hot-pressing a phosphor bronze and a back metal of a steel plate. This paper investigated the bonding interface characteristics in which is manufactured by melting a copper based bronze and a steel plate. The hardness from the inner surface of a bronze to the outer one of steel has been measured using a Vickers hardness tester. The experimental results show that the hardness of a bronze is superior to that of the conventional bronze and the transient hardness of pin-bush bearings is gradually increasing to the hardness of the steel back metal. This means that the bonding interface zone of pin-bush bearings may be fabricated by defusing a bronze to the steel plate due to a density difference between two materials.

Transmission Loss and Back-pressure Analysis for Inner-separated Muffler (내부 분할된 단순확장관의 투과손실 및 배압 전산해석)

  • Jeong, Weuibong;Kim, Yeon Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.687-689
    • /
    • 2014
  • This paper deals with the optimal muffler model by using acoustic analysis and CFD(computational fluid dynamics) analysis. The complicated muffler model could be better noise reduction performance. However, it could be worse affected to back-pressure performance by pressure drop in working fluid. High back-pressure is caused to low system efficiency. Therefore, it is important for the muffler design to consider the pressure drop. The muffler models are changed their partition plate position. Acoustic power transmission loss(TL) and pressure drop of working fluid are calculated by using computational analysis and used to build database for finding their trends. The optimal muffler model in user-interested frequency range could be selected by analyzing this database.

  • PDF

Unsteady Aerodynamics of Flat Plate with Porous Trailing-edge (다공성 표면 평판 끝 단 위의 비정상 공력 특성에 대한 연구)

  • Jeong, Ye-Eun;Moon, Young-J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.134-137
    • /
    • 2008
  • In this study, a computational analysis is conducted to investigate the effects of porous surfaces on the lift and drag forces of the flat plate. With the porous treatment, it is found that the strength of the Karman vortex as well as its influences over the trailing-edge surface are much weakened, resulting in significant reduction of the pressure fluctuations over the flat plate. The drag and lift coefficients are decreased by 85% and 18%, respectively, compared to the solid surface. The computed results also indicate that the size of the porous surface area does not have much influences but the back side of the flat plate has non-negligible effects on the interaction between the wall and the Karman vortex. As a result, the lift coefficient for the solid back side case is decreased only by 50.5% compared to the solid case and the drag coefficient is even increased by 65%.

  • PDF