• Title/Summary/Keyword: Back-contact

Search Result 366, Processing Time 0.03 seconds

결정질 태양전지 Local Back Contact 구조 후면에서의 B-H 결합에 의한 태양전지 특성 저하에 대한 연구

  • Song, Gyu-Wan;Yu, Gyeong-Yeol;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.420-420
    • /
    • 2011
  • 결정질 태양전지에서 고효율 달성을 위한 LBC(Local Back Contact) 구조의 중요성이 강조되고 있다. LBC 구조에서 후면 passivation 형성을 위한 SiNX layer를 PECVD로 형성 시, 실리콘 bulk 내로 H+ 원자가 침투하여 Boron과 결합하게 되면 Boron이 bulk 내에서 dopant로 작용을 하지 못하게 되어, 후면에서 p-층을 형성하고, 이는 VOC의 저하를 야기 시킨다. 본 연구에서는 LBC 구조에서 후면 passivation 시 bluk 내 B-H결합으로 인한 태양전지 특성 저하 문제를 해결하기 위해, SiNX를 증착하기 전에 얇은 산화막 barrier를 성장시켜 Bulk 내에 H+ 침투를 최소화 하였다. PECVD를 이용한 N2O 플라즈마 처리, HNO3 Wet Chemical Oxidation의 방법을 통해 substrate와 SiNX 사이에 얇은 oxide 층을 형성하였으며, 각각의 조건에 대해 lifetime 측정을 실시하였다. 그 결과 SiON/SiNx를 이용한 막의 lifetime이 $94.5{\mu}s$로 가장 우수하였고, Reference에 비해 25.4% 증가함을 확인할 수 있었다. 그러나 HNO3/SiNx에서는 30.6%, SiON에서는 84.3% 감소함을 확인하였다. Voc 측정 결과 또한 SiON/SiNx를 이용한 막이 670mV로 가장 우수함을 확인할 수 있었다. 본 연구를 통해 LBC구조에서 후면에 얇게 SiON/SiNx막을 형성함으로서 H+이온의 침투를 저지하여 후면 B-H결합을 막아 태양전지 특성 저하를 감소시키는 것을 확인할 수 있었다.

  • PDF

A Study of the Couplant Effects on Contact Ultrasonic Testing

  • Kim, Young-H.;Song, Sung-Jin;Lee, Sung-Sik;Lee, Jeong-Ki;Hong, Soon-Shin;Eom, Heung-Seop
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.6
    • /
    • pp.621-626
    • /
    • 2002
  • The amplitude of a back-wall echo depends on the reflection coefficient of the interface between a transducer and a test material when using contact pulse-echo ultrasonic testing. A couplant is used to transmit ultrasonic energy across the interface, but has an influence on the amplitude of the pulse-echo signal. To investigate the couplant effect on pulse-echo ultrasonic testing, back-wall echoes are measured by using various couplants made of water and glycerine in a carbon and austenitic stainless steel specimens. The amplitude of the first back-wall echo and the apparent attenuation coefficient increases with the acoustic impedance of the couplant. The couplant having a higher value of the transmission coefficient is more effective for flaw detection. The reflection coefficient should be known in order to measure the attenuation coefficient of the test material.

Investigation of Al Back Contact and BSF Formation by In-situ TEM for Silicon Solar Cells

  • Park, Sungeun;Song, Jooyoung;Tark, Sung Ju;Kim, Young Do;Choi, Chel-Jong;Kwon, Soonwoo;Yoon, Sewang;Kim, Donghwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.38.1-38.1
    • /
    • 2010
  • The trend to thinner crystalline silicon solar wafers in production of solar cells investigates re-evolution of back surface field (BSF) formation. We have studied mechanisms of back contact formation in Al evaporation and screen printed Al paste for Si solar cells by TEM analysis. We observed that Si diffuse into Al during heat up. The Si diffusion process made vacancies in Si wafer. The Al began to seep into the Si wafer (Al spike). During heat down, the Al spike were shrink which causes the doped region (BSF).

  • PDF

A study on the process for precision forming by 3-dimension bending machine (3 차원 벤딩 머신에서 정밀 성형을 위한 공정 개발에 관한 연구)

  • Kim H.J.;Lim S.H.;Lee C.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1897-1900
    • /
    • 2005
  • The purpose of this study is to investigate the bending process for manufacturing of sound pipe by 3 dimension bending machine. The arbitrarily-bended pipe is widely used in a heat exchanger system. The pipe should be formed precisely for assembling of heat changer. And, spring back effect and variation of the pipe thickness should be controlled effectively. We described the change of spring back amount and thickness variation of the pipe according to the change of bending radius and bending angle by FEM analysis. The analysis is adopted the elasic-plastic analysis and contact analysis on MARC software.

  • PDF

An Analysis on rear contact for crystalline silicon solar cell (결정질 실리콘 태양전지에 적용하기 위한 후면전극 형성에 관한 연구)

  • Kwon, Hyukyong;Lee, Jaedoo;Kim, Minjung;Lee, Soohong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.91.1-91.1
    • /
    • 2010
  • There are some methods for increasing efficiency of crystalline silicon solar cells. Among them, It is important to reduce the recombination loss of surface for high efficiency. In order to reduce recombination loss is a way to use the BSF(Back Surface Field). The BSF on the back of the p-type wafer forms a p+layer. so, it is prevented to act electrons of the p-area for the rear recombination. As a result, the leakage current is reduced and the rear-contact has a good Ohmic contact. therefore, open-circuit-voltage and Fill factor(FF) of solar cells are increased. This paper investigates the formation of rear contact process comparing Aluminum-paste(Al-paste) with Aluminum-Metal(99.9%). It is shown that the Aluminum-Metal provides high conductivity and low contact resistance of $21.35m{\Omega}cm$ using the Vacuum evaporation process but, it is difficult to apply the standard industrial process because high Vacuum is needed and it costs a tremendous amount more than Al-paste. On the other hand, using the Al-paste process by screen printing is simple for formation of metal contact and it is possible to produce the standard industrial process. however, it is lower than Aluminum-Metal(99.9) of conductivity because of including mass glass frit. In this study, contact resistances were measured by 4-point prove. each of contact resistances is $21.35m{\Omega}cm$ of Aluminum-Metal and $0.69m{\Omega}cm$ of Al-paste. and then rear contact have been analyzed by Scanning Electron Microscopy(SEM).

  • PDF

Formation of Ohmic Contact in P-Type CdTe Using Cu2 Te Electrode and Its Effect on the Photovoltaic Properties of CdTe Solar Cells (Cu2Te 배면 전극을 이용한 p-type CdTe 태양전지의 ohmic contact 형성 및 CdTe 태양전지의 광전압 특성)

  • Kim, Ki-Hwan;Yun, Jae-Ho;Lee, Doo-Youl;Ahn, Byung-Tae
    • Korean Journal of Materials Research
    • /
    • v.12 no.12
    • /
    • pp.918-923
    • /
    • 2002
  • In this work, CdTe films were deposited on CdS/ITO/glass substrate by a close spaced sublimation (CSS) method. A $Cu_2$Te layer was deposited on the CdTe film by evaporating $Cu_2$Te powder. Then the samples were annealed for p+ ohmic contact. TEM and XRD analysis showed that $CdTe/Cu_2$Te interface exhibited different forms with various annealing temperature. A good p+ ohmic contact was achieved when the annealing temperature was between $180^{\circ}C$ to $200^{\circ}C$. Best cell efficiency of 12.34% was obtained when post annealing temperature was $200^{\circ}C$ for 5 min. Thermal stress test of the CdS/CdTe cells with carbon back contact showed that the $Cu_2$Te contact was stable at $50^{\circ}C$ in $N_2$ and was slowly degraded at $100^{\circ}C$ in $N_2$. In comparison to the conventional carbon contact, the $Cu_2$Te contact showed a better thermal stability.

The Study on Musculoskeletal Effects of Heel Types (구두 굽의 형태가 인체의 근골격계에 미치는 영향에 관한 연구)

  • Lee, Chang-Min;Jeong, Eun-Hui
    • Journal of the Ergonomics Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.39-48
    • /
    • 2004
  • In terms of women engaged in clerical job. working time of the workers who mainly keep standing with their high-heeled shoes on has been increasing. According]y. they are exposed to many kinds of foot deformation caused by loads of lower back and lower extremities due to high-heeled shoes. The type of heels they usually wear are diverse though the hight is same. In this study. we investigated most women's favorite styles of shoes concerned with heights. types and contact areas of the heels. Hence. we designed three kinds of shoes for an experiment: their contact areas with ground are 1 cm2. 2-4 cm2 and over 9 cm2 according to the heel heights. respectively. To investigate the biomechanical effects. analysis of motion and EMG were applied to the experiments. In addition. foot pressure distribution was measured for more detailed analysis. Six healthy young women were participated in this experiments. The result showed the heel becoming higher and narrower increased not only fluctuation of CBM(Center of Body Mass). but also the load of low back muscle and lower extremities. Accordingly. there was significant difference among types of the heel in terms of the role supporting load of the body. though the height is same. Especially. the difference among the pressures on a foot was most significant. In conclusion. we verified biomechanical effects are related with the contact area of a heel with ground as well as the hight.

Construction of the Intelligence Stress Predictor for Compression Strength Evaluation (압축강도 평가를 위한 지능형 응력예측기 구축)

  • 박원규;우영환;이종구;윤인식
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.95-101
    • /
    • 2001
  • This work is concerned with construction of the intelligence stress predictor far compression strength evaluation using neural network-ultrasonic waves. The contact pressure in jointed plates was measured by using ultrasonic technique. Neural network is used to evaluate and predict contact pressure from the results of the calibration curves. The organized neural system was leaned with the accuracy of 99%, as a result of learning the ultrasonic echo ratio to the contact pressure measurement between SM45C and STS410 materials. And it could be evaluated and predicted with the accuracy of 90% in the evaluation of ultrasonic echo ratio difference in the same surface roughness and contact pressure, and 85% in the prediction of virtual ultrasonic echo ratio. Thus the proposed stress predictor is very useful for the evaluation and prediction of the contact pressure between SM45C and STS410 materials.

  • PDF

Simulated Study on the Effects of Substrate Thickness and Minority-Carrier Lifetime in Back Contact and Back Junction Si Solar Cells

  • Choe, Kwang Su
    • Korean Journal of Materials Research
    • /
    • v.27 no.2
    • /
    • pp.107-112
    • /
    • 2017
  • The BCBJ (Back Contact and Back Junction) or back-lit solar cell design eliminates shading loss by placing the pn junction and metal electrode contacts all on one side that faces away from the sun. However, as the electron-hole generation sites now are located very far from the pn junction, loss by minority-carrier recombination can be a significant issue. Utilizing Medici, a 2-dimensional semiconductor device simulation tool, the interdependency between the substrate thickness and the minority-carrier recombination lifetime was studied in terms of how these factors affect the solar cell power output. Qualitatively speaking, the results indicate that a very high quality substrate with a long recombination lifetime is needed to maintain the maximum power generation. The quantitative value of the recombination lifetime of minority-carriers, i.e., electrons in p-type substrates, required in the BCBJ cell is about one order of magnitude longer than that in the front-lit cell, i.e., $5{\times}10^{-4}sec$ vs. $5{\times}10^{-5}sec$. Regardless of substrate thickness up to $150{\mu}m$, the power output in the BCBJ cell stays at nearly the maximum value of about $1.8{\times}10^{-2}W{\cdot}cm^{-2}$, or $18mW{\cdot}cm^{-2}$, as long as the recombination lifetime is $5{\times}10^{-4}s$ or longer. The output power, however, declines steeply to as low as $10mW{\cdot}cm^{-2}$ when the recombination lifetime becomes significantly shorter than $5{\times}10^{-4}sec$. Substrate thinning is found to be not as effective as in the front-lit case in stemming the decline in the output power. In view of these results, for BCBJ applications, the substrate needs to be only mono-crystalline Si of very high quality. This bars the use of poly-crystalline Si, which is gaining wider acceptance in standard front-lit solar cells.

Reliability of Measurements of Back Vertex Power for Soft Contact Lenses Using an Auto-Lensmeter (자동렌즈미터를 이용한 소프트 콘택트렌즈의 굴절력 측정 방법에 관한 신뢰도)

  • Kim, Kun-Kyu;Lee, Wook-Jin;Lee, Sun-Haeng;Kwak, Ho-Won;Yu, Dong-Sik
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.15 no.1
    • /
    • pp.39-46
    • /
    • 2010
  • Purpose: To assess the reliability for measuring the back vertex power of soft contact lenses by dry blotting and wet cell method using an auto-lensmeter. Methods: The soft contact lenses used for measurement were 5 types that were distributed in Korea, and 4 back vertex powers (-1.50D, -3.00D, -6.00D, -9.00D) were used. and repeatability and reproducibility were evaluated by measuring them with an auto-lensmeter by two examiners. Results: Measured powers by dry blotting method were ranged in mean differences from 0.03D to 0.18D for overall lenses, 0.10D to 0.18D for silicone hydrogel lenses, 0.03D to 0.08D for hydrogel lenses. The mean differences between two examiners were less than 0.10D, and the inter-examiner reproducibility was good for dry blotting method. The mean difference between powers determined by wet cell method were 0.09D to 0.69D, the mean differences between two examiners were 0.02D to 0.59D. The reliability of measurements and inter-examiner reproducibility were less than dry blotting method. Conclusions: The reliability of measurements for all materials was better in dry blotting than wet cell method, the re liability of measurements for silicone hydrogel lenses was low in both methods. In clinical practical which requires quick checking of back vertex power using an auto-lensmeter. dry blotting method is thought to be more efficient than wet cell one.