• 제목/요약/키워드: Back-Propagation

검색결과 1,472건 처리시간 0.032초

Improving the Error Back-Propagation Algorithm for Imbalanced Data Sets

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • 제8권2호
    • /
    • pp.7-12
    • /
    • 2012
  • Imbalanced data sets are difficult to be classified since most classifiers are developed based on the assumption that class distributions are well-balanced. In order to improve the error back-propagation algorithm for the classification of imbalanced data sets, a new error function is proposed. The error function controls weight-updating with regards to the classes in which the training samples are. This has the effect that samples in the minority class have a greater chance to be classified but samples in the majority class have a less chance to be classified. The proposed method is compared with the two-phase, threshold-moving, and target node methods through simulations in a mammography data set and the proposed method attains the best results.

신경망을 이용한 고강도 콘크리트 배합설계모델에 관한 연구 (A Study on Mix Design Model of High Strength Concrete using Neural Networks)

  • 이유진;이선관;김영수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 추계 학술논문 발표대회
    • /
    • pp.253-254
    • /
    • 2012
  • The purpose of this study is to suggest and verify high-strength concrete mix design model applying neural network theory, in order to minimize effort and time wasted by using trial and error method utill now. There are 7 input and 2 output to predict mix design. 40 data of mix design were learned with back-propagation algorithm. Then they are repeatedly learned back-propagation in neural network theory. Also, to verify predicted model, we analyzed and compared value predicted from 60MPa mix design with value measured by actual compressive strength test.

  • PDF

역전파 알고리즘을 이용한 웨이퍼의 다이싱 상태 모니터링 (Monitoring of Wafer Dicing State by Using Back Propagation Algorithm)

  • 고경용;차영엽;최범식
    • 제어로봇시스템학회논문지
    • /
    • 제6권6호
    • /
    • pp.486-491
    • /
    • 2000
  • The dicing process cuts a semiconductor wafer to lengthwise and crosswise direction by using a rotating circular diamond blade. But inferior goods are made under the influence of several parameters in dicing such as blade, wafer, cutting water and cutting conditions. This paper describes a monitoring algorithm using neural network in order to find out an instant of vibration signal change when bad dicing appears. The algorithm is composed of two steps: feature extraction and decision. In the feature extraction, five features processed from vibration signal which is acquired by accelerometer attached on blade head are proposed. In the decision, back-propagation neural network is adopted to classify the dicing process into normal and abnormal dicing, and normal and damaged blade. Experiments have been performed for GaAs semiconductor wafer in the case of normal/abnormal dicing and normal/damaged blade. Based upon observation of the experimental results, the proposed scheme shown has a good accuracy of classification performance by which the inferior goods decreased from 35.2% to 6.5%.

  • PDF

역전파신경회로망을 이용한 피로손상모델링에 관한 연구 (A Study on Fatigue Damage Modeling Using Back-Propagation Neural Networks)

  • 조석수;장득열;주원식
    • 한국자동차공학회논문집
    • /
    • 제7권6호
    • /
    • pp.258-269
    • /
    • 1999
  • It is important to evaluate fatigue damage of in-service material in respect to assure safety and remaining fatigue life in structure and mechanical components under cyclic load . Fatigue damage is represented by mathematical modelling with crack growth rate da/dN and cycle ration N/Nf and is detected by X-ray diffraction and ultrasonic wave method etc. But this is estimated generally by single parameter but influenced by many test conditions The characteristics of it indicates fatigue damage has complex fracture mechanism. Therefore, in this study we propose that back-propagation neural networks on the basis of ration of X-ray half-value breath B/Bo, fractal dimension Df and fracture mechanical parameters can construct artificial intelligent networks estimating crack growth rate da/dN and cycle ratio N/Nf without regard to stress amplitude Δ $\sigma$.

  • PDF

Back-Propagation방법의 수렴속도 및 학습정확도의 개선 (Acceleration the Convergence and Improving the Learning Accuracy of the Back-Propagation Method)

  • 이윤섭;우광방
    • 대한전기학회논문지
    • /
    • 제39권8호
    • /
    • pp.856-867
    • /
    • 1990
  • In this paper, the convergence and the learning accuracy of the back-propagation (BP) method in neural network are investigated by 1) analyzing the reason for decelerating the convergence of BP method and examining the rapid deceleration of the convergence when the learning is executed on the part of sigmoid activation function with the very small first derivative and 2) proposing the modified logistic activation function by defining, the convergence factor based on the analysis. Learning on the output patterns of binary as well as analog forms are tested by the proposed method. In binary output patter, the test results show that the convergence is accelerated and the learning accuracy is improved, and the weights and thresholds are converged so that the stability of neural network can be enhanced. In analog output patter, the results show that with extensive initial transient phenomena the learning error is decreased according to the convergence factor, subsequently the learning accuracy is enhanced.

  • PDF

Diagnosis of rotating machines by utilizing a back propagation neural net

  • Hyun, Byung-Geun;Lee, Yoo;Nam, Kwang-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.522-526
    • /
    • 1994
  • There are great needs for checking machine operation status precisely in the iron and steel plants. Rotating machines such as pumps, compressors, and motors are the most important objects in the plant maintenance. In this paper back-propagation neural network is utilized in diagnosing rotating machines. Like the finger print or the voice print of human, the abnormal vibrations due to axis misalignment, shaft bending, rotor unbalance, bolt loosening, and faults in gear and bearing have their own spectra. Like the pattern recognition technique, characteristic. feature vectors are obtained from the power spectra of vibration signals. Then we apply the characteristic feature vectors to a back propagation neural net for the weight training and pattern recognition.

  • PDF

역전파 알고리즘에 의한 덕트내 소음의 능동제어 (Active Control of Sound in a Duct System by Back Propagation Algorithm)

  • 신준;김흥섭;오재응
    • 대한기계학회논문집
    • /
    • 제18권9호
    • /
    • pp.2265-2271
    • /
    • 1994
  • With the improvement of standard of living, requirement for comfortable and quiet environment has been increased and, therefore, there has been a many researches for active noise reduction to overcome the limit of passive control method. In this study, active noise control is performed in a duct system using intelligent control technique which needs not decide the coefficients of high order filter and the mathematical modeling of a system. Back propagation algorithm is applied as an intelligent control technique and control system is organized to exclude the error microphone and high speed operational device which are indispensable for conventional active noise control techniques. Furthermore, learning is performed by organizing acoustic feedback model, and the effect of the proposed control technique is verified via computer simulation and experiment of active noise control in a duct system.

문자인식 시스템을 위한 신경망 입력패턴 생성에 관한 연구 (A Study on Input Pattern Generation of Neural-Networks for Character Recognition)

  • 신명준;김성종;손영익
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.129-131
    • /
    • 2006
  • The performances of neural network systems mainly depend on the kind and the number of input patterns for its training. Hence, the kind of input patterns as well as its number is very important for the character recognition system using back-propagation network. The more input patters are used, the better the system recognizes various characters. However, training is not always successful as the number of input patters increases. Moreover, there exists a limit to consider many input patterns of the recognition system for cursive script characters. In this paper we present a new character recognition system using the back-propagation neural networks. By using an additional neural network, an input pattern generation method is provided for increasing the recognition ratio and a successful training. We firstly introduce the structure of the proposed system. Then, the character recognition system is investigated through some experiments.

  • PDF

Back propagation 신경망이론을 이용한 4 족 보행로봇의 가상 센서 기술 제안 (Proposal of Virtual Sensor Technique for Quadruped Robot using Backpropagation Neural Network)

  • 김완수;유승남;한창수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.894-899
    • /
    • 2008
  • Measured sensor datum from a quadruped robotics is commonly used for recognizing physical environment information which controls the posture of robotics. We can advance the ambulation with this sensed information and need to synthesize various sensors for obtaining accurate data, but most of these sensors are expensive and require excessive load for the operation. Those defects can be serious problem when it comes to the prototype's practicality and mass production, and maintenance of the system. This paper suggests virtual sensor technology for avoiding previous defects and presents ways to apply a theory to a walking robotics through virtual sensor information which is trained with several kinds of actual sensor information from the prototype system; the general algorithm is initially based on the neural network theory of back propagation. In specific, we verified a possibility of replacing the virtual sensor with the actual one through a reaction force measurement experiment.

  • PDF

신경망을 통한 숫자 검출 및 인식 (A number detection and recognition through a neural network)

  • 조현구;김남호;김찬수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 추계종합학술대회
    • /
    • pp.981-984
    • /
    • 2007
  • 문자 인식이란 시각 정보를 통하여 문자를 인식하고 의미를 이해하는 것으로 인간의 능력을 컴퓨터로 실현하는 패턴인식의 한 분야이다. 본 논문에서는 문자 인식 중 가장 많이 사용되고 있는 숫자 검출과 인식을 소개하고자 한다. 또한 숫자 인식을 위해서 인간의 두뇌를 모델로 하여 만들어진 신경망에 대한 기본적인 원리와 신경망의 학습을 위한 역 전파(Back propagation) 알고리즘에 대하여 알아보고자 한다.

  • PDF