• Title/Summary/Keyword: Back-Propagation

Search Result 1,472, Processing Time 0.034 seconds

Performance Evaluation of Attention-inattetion Classifiers using Non-linear Recurrence Pattern and Spectrum Analysis (비선형 반복 패턴과 스펙트럼 분석을 이용한 집중-비집중 분류기의 성능 평가)

  • Lee, Jee-Eun;Yoo, Sun-Kook;Lee, Byung-Chae
    • Science of Emotion and Sensibility
    • /
    • v.16 no.3
    • /
    • pp.409-416
    • /
    • 2013
  • Attention is one of important cognitive functions in human affecting on the selectional concentration of relevant events and ignorance of irrelevant events. The discrimination of attentional and inattentional status is the first step to manage human's attentional capability using computer assisted device. In this paper, we newly combine the non-linear recurrence pattern analysis and spectrum analysis to effectively extract features(total number of 13) from the electroencephalographic signal used in the input to classifiers. The performance of diverse types of attention-inattention classifiers, including supporting vector machine, back-propagation algorithm, linear discrimination, gradient decent, and logistic regression classifiers were evaluated. Among them, the support vector machine classifier shows the best performance with the classification accuracy of 81 %. The use of spectral band feature set alone(accuracy of 76 %) shows better performance than that of non-linear recurrence pattern feature set alone(accuracy of 67 %). The support vector machine classifier with hybrid combination of non-linear and spectral analysis can be used in later designing attention-related devices.

  • PDF

Design of Steel Structures Using the Neural Networks with Improved Learning (개선된 인공신경망의 학습방법에 의한 강구조물의 설계)

  • Choi, Byoung Han;Lim, Jung Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.661-672
    • /
    • 2005
  • For the efficient stochastic optimization of steel structures for which a large number of analyses is required, artificial neural networks,which have emerged as a powerful tool that could have been used to replace time-consuming procedures in many scientific or engineering applications, are applied. They are utilized for the solution of the equilibrium equations resulting from the application of the finite element method in connection with the reanalysis type of problem, for which a large number of finite element analyses are required in this study. As such, the use of artificial neural networks to predict finite element analysis outputs simplifies and facilitates the performance of the stochastic optimal design of structural systems where a trained neural network is used to replace the structural reanalysis phase. Moreover, to improve efficiency of used artificial neural networks, genetic algorithm is utilized. The stochastic optimizer used in this study is an algorithm based on the evolution theory. The efficiency of the proposed procedure is examined in problems with both volume (weight) functions and real-world cost functions

Dam Basin-scale Regionalization of Large-scale Model Output using the Artificial Neural Network (인공신경망모형을 이용한 대규모 대기모형모의결과의 댐유역스케일에서의 지역화기법)

  • Kang, Boo-Sik;Lee, Bong-Ki
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.179-183
    • /
    • 2009
  • 본 연구에서는 GCM 기후변화 전망 시나리오를 이용하여 유역단위의 기후변화를 추정하였다. 원시 GCM 시나리오를 지역화 시키기 위해서 인공신경망 모형을 사용하였다. GCM에서 모의되는 강수플럭스, 해면기압, 지표면 근처에서의 일 평균온도, 지표면으로부터 발생하는 잠열플럭스 등과 같은 22개의 변수는 인공신경망의 잠재적 예측인자로 사용되었으며, AWS에서 관측된 강수량과 온도는 예측변수로 사용되었다. 원시 GCM 데이터는 CCCma(Canadian Centre for Climate Modeling and Analysis)에서 제공되는 CGCM3.1/T63 20C3M 시나리오를 사용하였으며, 인공신경망 학습과정에서 사용된 기준시나리오(reference scenario)자료의 기간은 1997년부터 2000년까지의 데이터를 사용하였다. 인공신경망을 학습을 통하여 결정된 각 층사이의 가중치를 이용하여 이산화탄소 배출농도를 가정하여 생성된 CGCM3.1/T63 SRES B1 기후변화시나리오(project scenario)를 인공신경망의 입력값으로 하여 미래의 기온과 강수변화를 전망하였다. 신경망의 학습효과를 높이기 위하여 기온과 강수에 대한 평균 및 누적기간을 각각 일단위와 월단위로 설정하였다. 본 연구에서 사용된 인공신경망은 3층 퍼셉트론(다층 퍼셉트론)을 사용하였으며, 학습방법으로는 역전파알고리즘(back-propagation algorithm)을 이용하였다. 민감도분석을 통하여 선택된 예측인자는 소양강댐유역(1011, 1012소유역)에서의 인공신경망 예측인자로 활용되었으며, 2001년부터 2100년까지의 일 평균온도와 일 강수량의 변화경향을 추정하였다. 1011유역, 1012유역에서는 여름철의 온도변화경향이 겨울철에 비하여 높게 나타났다. 일 평균온도의 통계분석 결과 평균예측오차가 가장 적게 나타나는 지역은 1001유역으로 -0.08로 평균예측오차가 가장 적게 나타났으며, 인공신경망기법을 이용하여 스케일 상세화된 일 평균온도와 관측된 일 평균온도가 얼마나 잘 일치하는지를 확인할 수 있는 1012유역에서 CORR이 0.74로 가장 높게 나타났다.

  • PDF

Maximum Torque Control of IPMSM with Adoptive Leaning Fuzzy-Neural Network (적응학습 퍼지-신경회로망에 의한 IPMSM의 최대토크 제어)

  • Chung, Dong-Hwa;Ko, Jae-Sub;Choi, Jung-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.32-43
    • /
    • 2007
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. This paper proposes maximum torque control of IPMSM drive using adaptive learning fuzzy neural network and artificial neural network. This control method is applicable over the entire speed range which considered the limits of the inverter's current and voltage rated value. This paper proposes speed control of IPMSM using adaptive learning fuzzy neural network and estimation of speed using artificial neural network. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled adaptive learning fuzzy neural network and artificial neural network, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper proposes the analysis results to verify the effectiveness of the adaptive learning fuzzy neural network and artificial neural network.

Implementation of the Classification using Neural Network in Diagnosis of Liver Cirrhosis (간 경변 진단시 신경망을 이용한 분류기 구현)

  • Park, Byung-Rae
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.1
    • /
    • pp.17-33
    • /
    • 2005
  • This paper presents the proposed a classifier of liver cirrhotic step using MR(magnetic resonance) imaging and hierarchical neural network. The data sets for classification of each stage, which were normal, 1type, 2type and 3type, were analysis in the number of data was 231. We extracted liver region and nodule region from T1-weight MR liver image. Then objective interpretation classifier of liver cirrhotic steps. Liver cirrhosis classifier implemented using hierarchical neural network which gray-level analysis and texture feature descriptors to distinguish normal liver and 3 types of liver cirrhosis. Then proposed Neural network classifier learned through error back-propagation algorithm. A classifying result shows that recognition rate of normal is $100\%$, 1type is $82.8\%$, 2type is $87.1\%$, 3type is $84.2\%$. The recognition ratio very high, when compared between the result of obtained quantified data to that of doctors decision data and neural network classifier value. If enough data is offered and other parameter is considered this paper according to we expected that neural network as well as human experts and could be useful as clinical decision support tool for liver cirrhosis patients.

  • PDF

A Study on the Implementation of Hybrid Learning Rule for Neural Network (다층신경망에서 하이브리드 학습 규칙의 구현에 관한 연구)

  • Song, Do-Sun;Kim, Suk-Dong;Lee, Haing-Sei
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.60-68
    • /
    • 1994
  • In this paper we propose a new Hybrid learning rule applied to multilayer feedforward neural networks, which is constructed by combining Hebbian learning rule that is a good feature extractor and Back-Propagation(BP) learning rule that is an excellent classifier. Unlike the BP rule used in multi-layer perceptron(MLP), the proposed Hybrid learning rule is used for uptate of all connection weights except for output connection weigths becase the Hebbian learning in output layer does not guarantee learning convergence. To evaluate the performance, the proposed hybrid rule is applied to classifier problems in two dimensional space and shows better performance than the one applied only by the BP rule. In terms of learning speed the proposed rule converges faster than the conventional BP. For example, the learning of the proposed Hybrid can be done in 2/10 of the iterations that are required for BP, while the recognition rate of the proposed Hybrid is improved by about $0.778\%$ at the peak.

  • PDF

An Artificial Neural Networks Model for Predicting Permeability Properties of Nano Silica-Rice Husk Ash Ternary Blended Concrete

  • Najigivi, Alireza;Khaloo, Alireza;zad, Azam Iraji;Rashid, Suraya Abdul
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.3
    • /
    • pp.225-238
    • /
    • 2013
  • In this study, a two-layer feed-forward neural network was constructed and applied to determine a mapping associating mix design and testing factors of cement-nano silica (NS)-rice husk ash ternary blended concrete samples with their performance in conductance to the water absorption properties. To generate data for the neural network model (NNM), a total of 174 field cores from 58 different mixes at three ages were tested in the laboratory for each of percentage, velocity and coefficient of water absorption and mix volumetric properties. The significant factors (six items) that affect the permeability properties of ternary blended concrete were identified by experimental studies which were: (1) percentage of cement; (2) content of rice husk ash; (3) percentage of 15 nm of $SiO_2$ particles; (4) content of NS particles with average size of 80 nm; (5) effect of curing medium and (6) curing time. The mentioned significant factors were then used to define the domain of a neural network which was trained based on the Levenberg-Marquardt back propagation algorithm using Matlab software. Excellent agreement was observed between simulation and laboratory data. It is believed that the novel developed NNM with three outputs will be a useful tool in the study of the permeability properties of ternary blended concrete and its maintenance.

Turbojet Engine Control of UAV using Artificial Neural Network PID (인공신경망 PID를 이용한 무인항공기 터보제트 엔진 제어)

  • Kim, Dae-Gi;Hong, Gyo-Young;Ahn, Dong-Man;Hong, Seung-Beom;Jie, Min-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.2
    • /
    • pp.107-113
    • /
    • 2014
  • In this paper, controller Propose to prevent compressor surge and improve the transient response of the fuel flow control system of turbojet engine. Turbojet engine controller is designed by applying Artificial Neural Network PID control algorithm and make an inference by applying Artificial Neural Network Error Back Propagation Algorithm. To prevent any surge or a flame out event during the engine acceleration or deceleration, the ANN PID controller effectively controls the fuel flow input of the control system. ANN PID results are used as the fuel flow control inputs to prevent compressor surge and flame-out for turbo-jet engine and the controller is designed to converge to the desired speed quickly and safely. Using MATLAB to perform computer simulations verified the performance of the proposed controller. Response characteristics pursuant to the gain were analyzed by simulation.

Development of Artificial-Intelligent Power Quality Diagnosis Algorithm using DSP (DSP를 이용한 인공지능형 전력품질 진단기법 연구)

  • Chung, Gyo-Gbum;Kwack, Sun-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.116-124
    • /
    • 2009
  • This paper proposes a new Artificial-Intelligent(AI) Power Quality(PQ) diagnosis algorithm using Discrete Wavelet Transform(DWT), Fast Fourier Transform(FFT), Root-Mean-Square(RMS) value. The developed algorithm is able to detect and classify the PQ problems such as the transient, the voltage sag, the voltage swell, the voltage interruption and the total harmonics distortion. The 15.36[kHz] sampling frequency is used to measure the voltages in a power system. The measured signals are used for DWT, FFT, RMS calculation. For AI diagnosis of the PQ problems, a simple multi-layered Artificial Neural Network(ANN) with the back-propagation algorithm is adopted, programmed in C++ and tested in PSIM simulation studies. Finally, the algorithm, which is installed in MP PQ+256 with TI DSP320C6713, is proved to diagnose the PQ problems efficiently.

A Mobility Support Scheme Achieving High Energy-Efficiency for Sink Groups in Wireless Sensor Networks (무선 센서 망에서 싱크 그룹을 위한 에너지 효율 향상 이동성 지원 방안)

  • Yim, Yongbin;Park, Hosung;Lee, Jeongcheol;Oh, Seungmin;Kim, Sang-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.1
    • /
    • pp.63-71
    • /
    • 2013
  • In order to support mobility for sink groups, it is important to get the current location of a mobile sink group and then to offer the location to a source. Typically, previous works calculate a region including all member sinks by flooding; then, it notifies this region information to a source. However, flooding and location updates are periodically performed regardless of the group movement so that it causes considerable control overhead. In this paper, we propose an energy-efficient scheme supporting mobile sink groups. The proposed scheme obtains a location of a group without flooding. It exploits the inherent property of mobile sink groups which could approximate entire group movement by only partial member sinks movement. Also, the scheme learns group location by back-propagation learning method through exploiting overhearing feature in wireless communication environment. Our simulation studies show that the proposed scheme significantly improves in terms of energy consumption compared to the previous work.