• 제목/요약/키워드: Back surface field (BSF)

검색결과 26건 처리시간 0.026초

결정방향에 따른 결정질 실리콘 태양전지 후면전계 특성 연구 (Study of back surface field for orientation on Crystalline Silicon solar cell)

  • 김현호;박성은;김영도;송주용;탁성주;박효민;김성탁;김동환
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.41.2-41.2
    • /
    • 2010
  • 최근 태양전지 제조비용 절감을 위해 초박형 실리콘 태양전지 개발이 활발히 이루어지고 있다. 이에 따라 후면전계(Back Surface Field, BSF) 특성에 대한 관심이 높아지는 추세이다. 이에 본 연구에서는 후면의 결정방향 및 표면구조에 따라 형성되는 후면전계(BSF)의 특성에 대해 알아보고자 하였다. 후면이 절삭손상층 식각(Saw damage etching) 후 (100)면이 드러난 실리콘 기판과 텍스쳐링(Texturing) 후 (111)면이 드러난 실리콘 기판에 후면 전극을 스크린 인쇄 후 Ramp up rate을 달리 하여 소성 공정(RTP system)을 통해 후면전계(BSF)를 형성하여 비교하였다. 후면전계(BSF)의 형상과 특성만을 평가하기 위하여 염산을 이용하여 후면 전극층을 제거하였다. 후면 전극 제거 후 주사전자현미경(Scanning Electron Microscopy)과 3차원 미세형상측정기(Non-contacting optical profiler)로 후면전계(BSF)의 형상을 비교하였다. 또한 후면전계(BSF)의 특성을 평가하고자 Quasi-Steady-State Photo Conductance(QSSPC)를 사용하여 포화전류(Saturation current, $J_0$)을 측정하였고, 면저항 측정기(4-point probe)로 면저항을 측정하여 비교하였다. 후면 전계(BSF)는 (100)면과 (111)면에서 모두 Ramp up rate이 빠를수록 향상된 특성을 보였고, (111)면에서 더 큰 차이를 보였다.

  • PDF

후면 형상에 따른 결정질 실리콘 태양전지의 후면전계 형성 및 특성 (Back Surface Field Properties with Different Surface Conditions for Crystalline Silicon Solar Cells)

  • 김현호;김성탁;박성은;송주용;김영도;탁성주;권순우;윤세왕;손창식;김동환
    • 한국재료학회지
    • /
    • 제21권5호
    • /
    • pp.243-249
    • /
    • 2011
  • To reduce manufacturing costs of crystalline silicon solar cells, silicon wafers have become thinner. In relation to this, the properties of the aluminium-back surface field (Al-BSF) are considered an important factor in solar cell performance. Generally, screen-printing and a rapid thermal process (RTP) are utilized together to form the Al-BSF. This study evaluates Al-BSF formation on a (111) textured back surface compared with a (100) flat back surface with variation of ramp up rates from 18 to $89^{\circ}C$/s for the RTP annealing conditions. To make different back surface morphologies, one side texturing using a silicon nitride film and double side texturing were carried out. After aluminium screen-printing, Al-BSF formed according to the RTP annealing conditions. A metal etching process in hydrochloric acid solution was carried out to assess the quality of Al-BSF. Saturation currents were calculated by using quasi-steady-state photoconductance. The surface morphologies observed by scanning electron microscopy and a non-contacting optical profiler. Also, sheet resistances and bulk carrier concentration were measured by a 4-point probe and hall measurement system. From the results, a faster ramp up during Al-BSF formation yielded better quality than a slower ramp up process due to temperature uniformity of silicon and the aluminium surface. Also, in the Al-BSF formation process, the (111) textured back surface is significantly affected by the ramp up rates compared with the (100) flat back surface.

웨이퍼 접착 텍스쳐링을 이용한 결정질 실리콘 태양전지 고효율화 연구 (Texturing of Two Adhered Wafers for High Efficiency Crystalline Silicon Solar Cells)

  • 임형래;주광식;노시철;최정호;정종대;서화일
    • 반도체디스플레이기술학회지
    • /
    • 제13권3호
    • /
    • pp.21-25
    • /
    • 2014
  • The texturing is one of the most important processes for high efficiency crystalline silicon solar cells. The rear side flatness of silicon solar cell is very important for increasing the light reflectance and forming uniform back surface field(BSF) region in manufacturing high efficiency crystalline silicon solar cells. We investigated texturing difference between front and rear side of wafer by texturing of two adhered wafers. As a result, the flatter rear side was obtained by forming less pyramid size compared to the front side and improved reflectance of long wavelength and back surface field(BSF) region were also achieved. Therefore, the texturing of two adhered wafers can be expected to improve the efficiency of silicon solar cells due to increased short circuit current(Isc).

Investigation of Al Back Contact and BSF Formation by In-situ TEM for Silicon Solar Cells

  • 박성은;송주용;탁성주;김영도;최철종;권순우;윤세왕;김동환
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.38.1-38.1
    • /
    • 2010
  • The trend to thinner crystalline silicon solar wafers in production of solar cells investigates re-evolution of back surface field (BSF) formation. We have studied mechanisms of back contact formation in Al evaporation and screen printed Al paste for Si solar cells by TEM analysis. We observed that Si diffuse into Al during heat up. The Si diffusion process made vacancies in Si wafer. The Al began to seep into the Si wafer (Al spike). During heat down, the Al spike were shrink which causes the doped region (BSF).

  • PDF

Aluminum 및 Aluminum-Boron후면 전극에 따른 단결정 실리콘 태양전지 특성 (Characteristics of Mono Crystalline Silicon Solar Cell for Rear Electrode with Aluminum and Aluminum-Boron)

  • 홍지화;백태현;김진국;최성진;김남수;강기환;유권종;송희은
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.34-39
    • /
    • 2011
  • Screen printing method is a common way to fabricate the crystalline silicon solar cell with low-cost and high-efficiency. The screen printing metallization use silver paste and aluminum paste for front and rear contact, respectively. Especially the rear contact between aluminum and silicon is important to form the back surface filed (Al-BSF) after firing process. BSF plays an important role to reduces the surface recombination due to $p^+$ doping of back surface. However, Al electrode on back surface leads to bow occurring by differences in coefficient of thermal expansion of the aluminum and silicon. In this paper, we studied the properties of mono crystalline silicon solar cell for rear electrode with aluminum and aluminum-boron in order to characterize bow and BSF of each paste. The 156*156 $m^2$ p-type silicon wafers with $200{\mu}m$ thickness and 0.5-3 ${\Omega}\;cm$ resistivity were used after texturing, diffusion, and antireflection coating. The characteristics of solar cells was obtained by measuring vernier callipers, scanning electron microscope and light current-voltage. Solar cells with aluminum paste on the back surface were achieved with $V_{OC}$ = 0.618V, JSC = 35.49$mA/cm^2$, FF(Fill factor) = 78%, Efficiency = 17.13%.

  • PDF

Optimization of the Phosphorus Doped BSF Doping Profile and Formation Method for N-type Bifacial Solar Cells

  • Cui, Jian;Ahn, Shihyun;Balaji, Nagarajan;Park, Cheolmin;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • 제4권2호
    • /
    • pp.31-41
    • /
    • 2016
  • n-type PERT (passivated emitter, rear totally diffused) bifacial solar cells with boron and phosphorus diffusion as p+ emitter and n+ BSF (back surface field) have attracted significant research interest recently. In this work, the influences of wafer thickness, bulk lifetime, emitter, BSF on the photovoltaic characteristics of solar cells are discussed. The performance of the solar cell is determined by using one-dimensional solar cell simulation software PC1D. The simulation results show that the key role of the BSF is to decrease the surface doping concentration reducing the recombination and thus, increasing the cell efficiency. A lightly phosphorus doped BSF (LD BSF) was experimentally optimized to get low surface dopant concentration for n type bifacial solar cells. Pre-oxidation combined with a multi-plateau drive-in, using limited source diffusion was carried out before pre-deposition. It could reduce the surface dopant concentration with minimal impact on the sheet resistance.

Analysis of Aluminum Back Surface Field on Different Wafer Specification

  • 박성은;배수현;김성탁;김찬석;김영도;탁성주;김동환
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.216-216
    • /
    • 2012
  • The purpose of this work is to investigate a back surface field (BSF) on variety wafer resistivity for industrial crystalline silicon solar cells. As pointed out in this manuscript, doping a crucible grown Cz Si ingot with Ga offers a sure way of eliminating the light induced degradation (LID) because the LID defect is composed of B and O complex. However, the low segregation coefficient of Ga in Si causes a much wider resistivity variation along the Ga doped Cz Si ingot. Because of the resistivity variation the Cz Si wafer from different locations has different performance as know. In the light of B doped wafer, we made wider resistivity in Si ingot; we investigated the how resistivities work on the solar cells performance as a BSF quality.

  • PDF

Investigation of Firing Conditions for Optimizing Aluminum-Doped p+-layer of Crystalline Silicon Solar Cells

  • Lee, Sang Hee;Lee, Doo Won;Shin, Eun Gu;Lee, Soo Hong
    • Current Photovoltaic Research
    • /
    • 제4권1호
    • /
    • pp.12-15
    • /
    • 2016
  • Screen printing technique followed by firing has commonly been used as metallization for both laboratory and industrial based solar cells. In the solar cell industry, the firing process is usually conducted in a belt furnace and needs to be optimized for fabricating high efficiency solar cells. The printed-Al layer on the silicon is rapidly heated at over $800^{\circ}C$ which forms a layer of back surface field (BSF) between Si-Al interfaces. The BSF layer forms $p-p^+$ structure on the rear side of cells and lower rear surface recombination velocity (SRV). To have low SRV, deep $p^+$ layer and uniform junction formation are required. In this experiment, firing process was carried out by using conventional tube furnace with $N_2$ gas atmosphere to optimize $V_{oc}$ of laboratory cells. To measure the thickness of BSF layer, selective etching was conducted by using a solution composed of hydrogen fluoride, nitric acid and acetic acid. The $V_{oc}$ and pseudo efficiency were measured by Suns-$V_{oc}$ to compare cell properties with varied firing condition.

이면전계(BSF)에의한 solar cell의 효율개선효과 (Efficiency improvement of solar cell by back surface field)

  • 소대화;강기성;박정철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1990년도 추계학술대회 논문집
    • /
    • pp.88-90
    • /
    • 1990
  • In this study, PN junction solar cell and P$\^$+/-N-N$\^$+/ BSF solar cell, using N-type(111), 10$\^$16/[atoms/cm$\^$-3/] wafer, were fabricated applying that ion implant method whose dose are 1E14, 1E15, 3E15 and its acceleration energy is 50Key, 100Key respectively. The impurity concentration of two types of front-side are 10$\^$18/[atoms/cm$\^$-3/] and back-side concentration for BSF solar cell is 10$\^$17/[atoms/cm$\^$-3/]. As a result of comparison for 2 typical types of cells out of various fabricated samples, open circuit voltage (Voc), short circuit current(Isc) of BSF solar cell are larger than those of PN solar cell by 48[%], 14[%]. Considering that the efficiency of BSF cell is 2.5[%] as well as PN solar cell's is 7.5[%], 10.0[%] of efficiency improvement effect can be obtained from BSF solar cell. Futhermore, in consequence of front-side impurity concentration change from 10$\^$17/[atoms/cm$\^$-3] to 10$\^$20/[atoms/cm$\^$-3/] alternately, the most ideal result can be expected when it is 10$\^$18/[atoms/cm$\^$-3/].

레올로지 조절에 따른 BSF층 형성 능력 평가 (Evaluation of BSF Layer Formation Ability by the Rheological Control)

  • 양승진;이정웅;박기범;윤미경;박성용
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.101.2-101.2
    • /
    • 2010
  • 태양전지에서 고효율을 얻기 위해서는 알루미늄 원자의 확산에 의한 불순물층으로서 p+층이 필수적이다. P+층은 형성전자의 재결합을 방지하고, 생성 캐리어의 수집 효율을 향상시키는 BSF(Back Surface Field) 효과의 역할을 한다. 도포된 알루미늄 페이스트가 부족할 경우 BSF효과가 나타나지 않으며 과할 경우 웨이퍼가 휨이 발생하여 최적 인쇄도포량이 중요하다. 본 연구에서는 레오미터 측정조건을 스크린 프린팅 인쇄 조건과 유사하게 진행하여 저장탄성율(G') 과 손실탄성율(G")의 관계를 살펴보았다. 회복단계에서 G'>G" 이고 Cross point가 없을 경우 도포량이 1.8g 이상이였으며, 웨이퍼의 휨(bowing)이 크게 발생하였고, 이와 반대로 회복시 20초 후에 Cross point가 나타난 경우 10% 정도 도포량 감소와 함께 휨 발생도 1 mm 이하로 양호한 특성을 확인할 수 있었다.

  • PDF