• 제목/요약/키워드: Back frame strength test

검색결과 8건 처리시간 0.026초

자동차 시트 쿠션 프레임 및 백 프레임의 구조 강도 해석 (Structural Strength Analysis at Cushion Frame and Back Frame of Automotive Seat)

  • 김성수;김기선;최두석;박상흡;김세환;조재웅
    • 한국산학기술학회논문지
    • /
    • 제13권11호
    • /
    • pp.4956-4962
    • /
    • 2012
  • 자동차의 다양한 부품 중 자동차 시트는 인간과의 직접 접촉 부위로서 승차감을 평가 할 수 있는 가장 기본적인 항목이다. 따라서 자동차 시트는 승차감과 동시에 충분한 강성과 강도를 가져야 할 것이다. 본 연구에서는 자동차 시트에서의 시트 쿠션 프레임과 백 프레임을 3D 모델링하였고, 쿠션 프레임의 비틀림 강도, 수직하중강도 시험, 백 프레임의 강도 시험 3가지 실험에 대해서 시뮬레이션으로 구조해석을 하였다. 해석결과, 쿠션 프레임 비틀림 강도 시험에서는 초기 전변형량의 최대값은 5.8421mm가 나왔고, 영구 전변형량의 최대값은 0.02539mm가 나왔다. 쿠션 프레임 수직하중강도 시험에서는 쿠션 프레임 앞쪽 끝단의 전변형량은 2.1159mm이고, 뒤쪽 끝단은 0.0606mm이다. 하중을 더 증가한 경우는 전변형량의 최대값은 3.1739mm가 나왔다. 3 가지의 백 프레임 강도 시험에서는 최대의 전변형량은 0.18634mm로 나타났다. 본 연구결과는 자동차 시트 쿠션 프레임 및 백프레임의 과도한 변형 및 파괴가 없음으로서 승객의 안전을 보장하는 충분한 강성과 강도를 검증할 수 있었다.

상용 버스용 알루미늄 시트 프레임의 개발에 관한 연구 (A Study on the Development of Aluminum Seat Frame for Commercial Bus)

  • 우호광;이상복;김상범;김헌영
    • 한국자동차공학회논문집
    • /
    • 제12권3호
    • /
    • pp.91-100
    • /
    • 2004
  • This study presents the development of a new aluminum seat frame for the commercial bus. Back moment and seat belt anchorage analysis of the conventional steel seat frame was conducted as a base model. Effective aluminum section dimensions for aluminum pipe were calculated from equivalent stiffness and equivalent weight study. Back moment and seat belt anchorage strength with the developed aluminum seat frame were compared to those of the base model. Additionally, to pass the fatigue test, shape modification of side frame assembly was conducted. From this study we could reduce the weight of seat frame more than 5 kg. And the current analysis model and procedure can provide useful informations in designing a new commercial car seat and can reduce the overall design cost and time.

자동차용 차세대 통합형시트 개발을 위한 공정 및 최적화설계 기법 연구 (하이드로포밍 공법을 이용한 경량 시트프레임 설계) (The Study on Process and Optimal Design for Development of Next Generation Integrated Restraint Seat for Automobile (The Design of Lightweight Seat Frame made by the Hydroforming Process))

  • 표창률;전병희;조명래;전한수
    • 한국안전학회지
    • /
    • 제15권1호
    • /
    • pp.80-85
    • /
    • 2000
  • The hydroforming process is rapidly gaining popularity in the sheet metal forming industry. In this study, hydroforming process is applied to the seat back frame. The load-deformation characteristics of seat frame are simulated according to the test requirements by FMVSS. Structural analyses were performed with an analysis package program named I-DEAS for the conventional and the hydroforming seat back frame. The seat back frame made by hydroforming is not only about 23 percent lightweight, but also about 20 percent high strength compared with conventional that.

  • PDF

전투 배낭 프레임 경량화를 위한 섬유강화복합재의 홀가공 조건이 미치는 영향 (Effect of Hole Processing Condition on Carbon Fiber-Reinforced Plastic Composites for Lightweight Combat Backpack Frames)

  • 김혁진;권동준;이재동;손현식;진영호
    • 한국염색가공학회지
    • /
    • 제34권4호
    • /
    • pp.241-249
    • /
    • 2022
  • As for military backpacks in Korea, utility backpack products equipped with various functions along with comfort and convenience are being developed. As a result, the volume and weight of the backpack increase, and many lightweight studies of the materials forming the backpack are being conducted. This study is a basic study on frame lightweight using fiber-reinforced composites to deal with aluminum, a back frame that maintains the shape of a backpack and provides stability when worn by combatants. As is known, only fiber-reinforced composites have sufficient light weight and mechanical properties, but the mechanical properties were reviewed by drilling holes to maximize the light weight. Tensile strength and flexural strength were measured by drilling 6mm, 12mm, 18mm, and 24mm holes, and the tensile strength and flexural strength were measured when 1, 3, 5, and 7 holes of 12mm were increased. As a result, even when the number of holes was increased, tensile strength did not change significantly, and the flexural strength showed to be higher in the case of 3 holes and 5 holes than in the case of 1 hole.

자동차 시트 프레임 구조의 내구성 향상 설계에 관한 연구 (A Study on the Durability Design of an Automotive Seat Frame)

  • 우창수;조현직;구정서;권재도
    • 한국자동차공학회논문집
    • /
    • 제12권4호
    • /
    • pp.50-57
    • /
    • 2004
  • Structural analysis and fatigue tests have been performed to develop design and evaluation technologies of automotive seat frames. Under the back moment loading condition, the numerical simulation unveiled the maximum stress up to the yield strength at the side frame bracket. To measure the stresses under the test condition, strain gauges were attached to some weakest points of the side frames. the measured strains are in good agreements with the CAE results. On the other hand, some fatigue tests have been performed using the side frame bracket specimens made of various welding types to evaluate their durabilities. From the fatigue tests and the numerical analyses, it was recommended that the bracket welding position should be moved upward.

자동차 시트 프레임의 강도설계 및 평가기술 개발 (Structural Analysis and Evaluation Technologies of Automotive Seat Frames)

  • 우창수;구정서;조현직;김화식;정철호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.806-811
    • /
    • 2001
  • To develop design and evaluation technologies of automotive seat frames, structural analysis and fatigue tests have been performed. Under the back moment loading condition, the numerical simulation yielded the maximum stress over the yield strength at the side frame bracket. To measure the stresses under the test condition, strain gauges were attached on some weakest points of the side frames. the measured strains are in good agreements with the CAE results. On the other hand, fatigue tests have been performed using the side frame bracket specimens made of various welding types to estimate their durabilities. From the fatigue test results and the analysis ones, it was recommended that the welding position of the bracket should be moved upward.

  • PDF

RV 차량 시트의 적재물 침입 강도해석 (Strength Analysis of Luggage Intrusion into Recreational Vehicle Seat)

  • 배진우;강성종
    • 한국자동차공학회논문집
    • /
    • 제13권4호
    • /
    • pp.160-166
    • /
    • 2005
  • In recent, recreational vehicles, which efficiently provide wide inner space for various utilities, are highly preferred in automobile market. Though those vehicles enable to load much luggage in space behind the last seat, in case of frontal impact with high velocity the luggage strongly collides into the seat back and the passengers in. the last seat could be severely injured. Therefore, high strength against luggage intrusion is required for the last seat, and it is regulated by law of ECE R17. In this study, for a recreational vehicle under developing, an analysis technique for simulating seat crash in accordance with luggage intrusion test of ECE R17 was investigated. The results exhibited good correlation with the test ones.

Lateral Resistance of CLT Wall Panels Composed of Square Timber Larch Core and Plywood Cross Bands

  • JANG, Sang Sik;LEE, Hyoung Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권5호
    • /
    • pp.547-556
    • /
    • 2019
  • Thinned, small larch logs have small diameters and no value-added final use, except as wood chips, pallets, or fuel wood, which are products with very low economic value; however, their mechanical strength is suitable for structural applications. In this study, small larch logs were sawed, dried, and cut into square timbers (with a $90mm{\times}90mm$ cross section) that were laterally glued to form core panels used to manufacture cross-laminated timber (CLT) wall panels. The surface and back of these core panels were covered with 12-mm-thick structural plywood panels, used as cross bands to obtain three-ply CLT wall panels. This attachment procedure was conducted in two different ways: gluing and pressing (CGCLT) or gluing and nailing (NGCLT). The size of the as-manufactured CLT panels was $1,220mm{\times}2,440mm$, the same as that of the plywood panels. The final wall panels were tested under lateral shear force in accordance with KS F 2154. As the lateral load resistance test required $2,440mm{\times}2,440mm$ specimens, two CLT wall panels had to be attached in parallel. In addition, the final CLT panels had tongued and grooved edges to allow parallel joints between adjacent pieces. For comparison, conventional light-frame timber shear walls and midply wall systems were also tested under the same conditions. Shear walls with edge nail spacing of 150 mm and 100 mm, the midply wall system, and the fabricated CGCLT and NGCLT wall panels exhibited maximum lateral resistances of 6.1 kN/m (100%), 9.7 kN/m (158%), 16.9 kN/m (274%), 29.6 kN/m (482%), and 35.8 kN/m (582%), respectively.