• 제목/요약/키워드: Back Surface Field

검색결과 161건 처리시간 0.032초

EFFECT OF GLASS-COATED Al PASTE ON BACK-SURFACE FIELD FORMATION IN Si SOLAR CELLS

  • HYEONDEOK JEONG;SUNG-SOO RYU
    • Archives of Metallurgy and Materials
    • /
    • 제65권3호
    • /
    • pp.989-992
    • /
    • 2020
  • In this study, glass frit was coated uniformly on the surface of Al particles instead of adding glass frit to Al powder by simple mixing to form a nano-layer. The influence of the glass-frit coating on the formation of the back-surface field and electrical characteristics of the resulting Al electrode were investigated. Microstructural observations indicated that the glass components were uniformly distributed and the back-surface field layer thickness was more uniform compared to the simply mixed sample. In addition, the sheet resistance was <10 mΩ/□, much lower than the 23 mΩ/□ of the simply mixed Al electrode.

PC1D Simulation을 통한 결정질 실리콘 태양전지의 국부적 후면 전극 최적화 설계 (An optimal design for the local back contact pattern of crystalline silicon solar cells by using PC1D simulation)

  • 오성근;임충현;조영현
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.43.1-43.1
    • /
    • 2010
  • In the crystalline silicon solar cells, the full area aluminum_back surface field(BSF) is routinely achieved through the screen-printing of aluminum paste and rapid firing. It is widely used in the industrial solar cell because of the simple and cost-effective process to suppress the overall recombination at the back surface. However, it still has limitations such as the relatively higher recombination rate and the low-to-moderate reflectance. In addition, it is difficult to apply it to thinner substrate due to wafer bowing. In the recent years, the dielectric back-passivated cell with local back contacts has been developed and implemented to overcome its disadvantages. Although it is successful to gain a lower value of surface recombination velocity(SRV), the series resistance($R_{series}$) becomes even more important than the conventional solar cell. That is, it is a trade off relationship between the SRV and the $R_{series}$ as a function of the contact size, the contact spacing and the geometry of the opening. Therefore it is essential to find the best compromise between them for the high efficiency solar cell. We have investigated the optimal design for the local back contact by using PC1D simulation.

  • PDF

후면 형상에 따른 결정질 실리콘 태양전지의 후면전계 형성 및 특성 (Back Surface Field Properties with Different Surface Conditions for Crystalline Silicon Solar Cells)

  • 김현호;김성탁;박성은;송주용;김영도;탁성주;권순우;윤세왕;손창식;김동환
    • 한국재료학회지
    • /
    • 제21권5호
    • /
    • pp.243-249
    • /
    • 2011
  • To reduce manufacturing costs of crystalline silicon solar cells, silicon wafers have become thinner. In relation to this, the properties of the aluminium-back surface field (Al-BSF) are considered an important factor in solar cell performance. Generally, screen-printing and a rapid thermal process (RTP) are utilized together to form the Al-BSF. This study evaluates Al-BSF formation on a (111) textured back surface compared with a (100) flat back surface with variation of ramp up rates from 18 to $89^{\circ}C$/s for the RTP annealing conditions. To make different back surface morphologies, one side texturing using a silicon nitride film and double side texturing were carried out. After aluminium screen-printing, Al-BSF formed according to the RTP annealing conditions. A metal etching process in hydrochloric acid solution was carried out to assess the quality of Al-BSF. Saturation currents were calculated by using quasi-steady-state photoconductance. The surface morphologies observed by scanning electron microscopy and a non-contacting optical profiler. Also, sheet resistances and bulk carrier concentration were measured by a 4-point probe and hall measurement system. From the results, a faster ramp up during Al-BSF formation yielded better quality than a slower ramp up process due to temperature uniformity of silicon and the aluminium surface. Also, in the Al-BSF formation process, the (111) textured back surface is significantly affected by the ramp up rates compared with the (100) flat back surface.

레이저를 이용한 결정질 실리콘 태양전지 국부적 후면 전극 연구 (Investigation of local back surface field for crystalline silicon solar cells using laser)

  • 권준영;유진수;유권종;한규민;최성진;김남수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.245-245
    • /
    • 2010
  • This paper and the rear passivation experiment was local back surface field Nd:$YVO_4$ green laser and the experiment was used performed to screen printing. Laser power 100%, with a fixed frequency for 60kHz Current of 29A and 30A were tested in two conditions. The point contact distances of 0.2mm, 0.4mm, 0.6mm, 0.8mm and 29A and 30A current conditions, it was found that is suitable for 0.4mm.

  • PDF

소성 온도 변화 따른 후면 전계 형성이 결정질 실리콘 태양전지 특성에 미치는 영향 (Formation of Al diffused back surface field on rear passivation layer)

  • 송주용;박성은;강민구;박효민;탁성주;권순우;윤세왕;김동환
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.91-91
    • /
    • 2009
  • 태양전지의 전극소성 시 알루미늄 후면 전극이 실리콘으로 확산되어 후면전계(Back Surface Field)를 형성한다. 후면 패시베이션층은 후면반사율을 높여 내부광흡수경로를 늘리고 후면재결합속도를 감소시킨다. 본 논문은 후면 패시베이션층이 알루미늄 후면전계 형성에 미치는 영향 및 온도에 따른 변화를 관찰하였다. 절삭손상(Saw damage)이 제거된 실리콘 기판의 후면에 패시베이션층이 없는 것과 후면 패시베이션층으로 사용되는 실리콘 산화막을 형성시킨 시편을 제작하였다. 알루미늄 후면전극을 스크린 인쇄 후 소성온도를 달리하여 실리콘과 알루미늄과의 반응을 비교하였다. 주사전자현미경(SEM)을 사용하여 시편의 단면사진으로부터 소성온도에 따른 실리콘과 알루미늄간의 반응 여부를 관찰하였고, 열분석을 통해 반응 온도를 조사하였다. 패시베이션층이 없는 경우에는 약 $600^{\circ}C$부터 실리콘과 알루미늄간의 반응이 시작되었고, 패시베이션층이 있는 경우에는 약 $700^{\circ}C$부터 반응이 시작되는 결과를 얻었다.

  • PDF

분위기에 따른 실리콘 태양전지 후면 전극 및 후면 전계의 형상과 특성 분석 (Effects of Firing Ambient on Rear Metallization for Silicon Solar Cells)

  • 박성은;김영도;박효민;강윤묵;이해석;김동환
    • 한국재료학회지
    • /
    • 제25권7호
    • /
    • pp.336-340
    • /
    • 2015
  • For rear metallization with Al paste, Al back contacts require good passivation, high reflectance, and a processing temperature window compatible with the front metal. In this paper, the effect of the firing ambient during the metallization process on the formation of Al rear metal was investigated. We chose three different gases as ambient gases during the firing process. Using SEM, we observed the formation of a back surface field in $N_2$, $O_2$, and Air ambients. To determine the effect of the ambient on Voc, the suns-Voc tool was used. In this study, we described the mechanism of burn-out of organic materials in Al paste during the firing process. The oxygen ambient plays an important role in the burn-out process. We calculated the efficiency with obtained the back surface recombination velocities using PC1D simulation. It was found that the presence of oxygen during the firing process influenced the uniform back surface field because the organic materials in the Al paste were efficiently burned out during heating. The optimized temperature with oxygen flow shows an absolute efficiency of 19.1% at PC1D simulation.

SOI MOSFET의 단채널 효과를 고려한 문턱전압과 I-V특성 연구 (A Study on Threshold Voltage and I-V Characteristics by considering the Short-Channel Effect of SOI MOSFET)

  • 김현철;나준호;김철성
    • 전자공학회논문지A
    • /
    • 제31A권8호
    • /
    • pp.34-45
    • /
    • 1994
  • We studied threshold voltages and I-V characteristics. considering short channel effect of the fully depleted thin film n-channel SOI MOSFET. We presented a charge sharing model when the back surface of short channel shows accumulation depletion and inversion state respectively. A degree of charge sharing can be compared according to each of back-surface conditions. Mobility is not assumed as constant and besides bulk mobility both the mobility defined by acoustic phonon scattering and the mobility by surface roughness scattering are taken into consideration. I-V characteristics is then implemented by the mobility including vertical and parallel electric field. kThe validity of the model is proved with the 2-dimensional device simulation (MEDICI) and experimental results. The threshold voltage and charge sharing region controlled by source or drain reduced with increasing back gate voltage. The mobility is dependent upon scattering effect and electric field. so it has a strong influence on I-V characteristics.

  • PDF

결정방향에 따른 결정질 실리콘 태양전지 후면전계 특성 연구 (Study of back surface field for orientation on Crystalline Silicon solar cell)

  • 김현호;박성은;김영도;송주용;탁성주;박효민;김성탁;김동환
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.41.2-41.2
    • /
    • 2010
  • 최근 태양전지 제조비용 절감을 위해 초박형 실리콘 태양전지 개발이 활발히 이루어지고 있다. 이에 따라 후면전계(Back Surface Field, BSF) 특성에 대한 관심이 높아지는 추세이다. 이에 본 연구에서는 후면의 결정방향 및 표면구조에 따라 형성되는 후면전계(BSF)의 특성에 대해 알아보고자 하였다. 후면이 절삭손상층 식각(Saw damage etching) 후 (100)면이 드러난 실리콘 기판과 텍스쳐링(Texturing) 후 (111)면이 드러난 실리콘 기판에 후면 전극을 스크린 인쇄 후 Ramp up rate을 달리 하여 소성 공정(RTP system)을 통해 후면전계(BSF)를 형성하여 비교하였다. 후면전계(BSF)의 형상과 특성만을 평가하기 위하여 염산을 이용하여 후면 전극층을 제거하였다. 후면 전극 제거 후 주사전자현미경(Scanning Electron Microscopy)과 3차원 미세형상측정기(Non-contacting optical profiler)로 후면전계(BSF)의 형상을 비교하였다. 또한 후면전계(BSF)의 특성을 평가하고자 Quasi-Steady-State Photo Conductance(QSSPC)를 사용하여 포화전류(Saturation current, $J_0$)을 측정하였고, 면저항 측정기(4-point probe)로 면저항을 측정하여 비교하였다. 후면 전계(BSF)는 (100)면과 (111)면에서 모두 Ramp up rate이 빠를수록 향상된 특성을 보였고, (111)면에서 더 큰 차이를 보였다.

  • PDF

웨이퍼 접착 텍스쳐링을 이용한 결정질 실리콘 태양전지 고효율화 연구 (Texturing of Two Adhered Wafers for High Efficiency Crystalline Silicon Solar Cells)

  • 임형래;주광식;노시철;최정호;정종대;서화일
    • 반도체디스플레이기술학회지
    • /
    • 제13권3호
    • /
    • pp.21-25
    • /
    • 2014
  • The texturing is one of the most important processes for high efficiency crystalline silicon solar cells. The rear side flatness of silicon solar cell is very important for increasing the light reflectance and forming uniform back surface field(BSF) region in manufacturing high efficiency crystalline silicon solar cells. We investigated texturing difference between front and rear side of wafer by texturing of two adhered wafers. As a result, the flatter rear side was obtained by forming less pyramid size compared to the front side and improved reflectance of long wavelength and back surface field(BSF) region were also achieved. Therefore, the texturing of two adhered wafers can be expected to improve the efficiency of silicon solar cells due to increased short circuit current(Isc).

A Study on Blister Formation and Electrical Characteristics with Varied Annealing Condition of P-doped Amorphous Silicon

  • 최성진;김가현;강민구;이정인;김동환;송희은
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.346.2-346.2
    • /
    • 2016
  • The rear side contact recombination in the crystalline silicon solar cell could be reduced by back surface field. We formed polycrystalline silicon as a back surface field through crystallization of amorphous silicon. A thin silicon oxide applied to the passivation layer. We used quasi-steady-state photoconductance measurement to analyze electrical properties with various annealing condition. And, blister formed on surface of wafer during the annealing process. We observed the blister after varied annealing process with wafer of various surface. Shape and density of blister is influenced by various annealing temperature and process time. As the annealing temperature became higher, the average diameter of blister is decreased and total number of blister is increased. The sample with the $600^{\circ}C$ annealing temperature and 1 min annealing time exhibited the highest implied open circuit voltage and lifetime. We predicted that the various shape and density of blister affects the lifetime and implied open circuit voltage.

  • PDF