• Title/Summary/Keyword: Back Supporting Beam

Search Result 3, Processing Time 0.02 seconds

An Experimental Study on the Stability of Assembled Earth Retaining Wall in Sandy Ground (사질토 지반에 설치된 조립식 지주옹벽(AER)의 안정성에 관한 실험적 연구)

  • Yoo, Jae-Won;Im, Jong-Chul;Hwang, Sung-Pil;Kim, Chang-Young;Choi, Jung-Hyun;Kim, Hong-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.2
    • /
    • pp.43-52
    • /
    • 2016
  • Assembled Earth Retaining wall (AER-wall is used here) using back pile (back supporting beam is used from here) has been developed at Pusan National University. Both cost and time have been significantly reduced because AER-wall can be fabricated in a shop. Also its stability has been improved with a back supporting beam reducing earth pressure. In this study, the test results were analyzed after laboratory model tests were performed. The lateral displacement of AER-wall significantly decreased with both inclined wall and back supporting beams. As a result, the stability of AER-wall and effect of back supporting beam have been analyzed and verified.

Mechanical Effects of Back Supporting Beam of Assembled Earth Retaining Wall on Field Model Tests Results (현장모형실험을 통한 AER옹벽의 지주보의 역학적 효과)

  • Kim, Hongsun;Im, Jong-Chul;Choi, Junghyun;Seo, Minsu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.343-355
    • /
    • 2017
  • In this study, an Assembled Earth Retaining Wall (AER wall) is newly proposed. The AER wall combined stabilizing piles names as Back Supporting Beam is developed to improve stability and economics of existing retaining walls. For the verification of the AER wall, the field model tests and 3D numerical analyses were performed. As a result of the field tests, it can be confirmed that the earth pressure is considerably reduced compared with the L-shaped retaining wall. Also, the 3D numerical analyses show that AER wall is at least 29.85% more effective at lateral displacement than general L-shaped retaining wall. In other words, AER wall is expected to raise economical efficiency because of excellent mechanical stability of Back Supporting Beam.

Stability Analysis According to the Shape of Assembled Earth Retaining Wall by the Field Model Tests and 3D-Numerical Analysis (현장모형실험과 3D 수치해석을 통한 AER 조립식 지주옹벽의 형태에 따른 안정성 분석)

  • Seo, Minsu;Im, Jong-Chul;Son, Su Won;Kim, Hong-Sun;Choi, Jung-Hyun;Kim, Changyoung
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.1
    • /
    • pp.17-30
    • /
    • 2017
  • There are many limitations for ensuring structural stability of retaining wall. Especially, L-shaped retaining wall and gravity retaining wall need large space, and massive concrete, respectively. Assembled Earth Retailing (AER) wall was developed to overcome the shortcomings. In this paper, stability of AER wall is verified by field model tests and the 3D-numerical analysis. The results show that horizontal displacement of AER wall was reduced by maximum 67.84% for conventional retaining walls, and earth pressure acting on the retaining wall was reduced by maximum 73.19%.