• Title/Summary/Keyword: Back Propagation Training Algorithm

Search Result 185, Processing Time 0.027 seconds

Internet Traffic Control Using Dynamic Neural Networks

  • Cho, Hyun-Cheol;Fadali, M. Sami;Lee, Kwon-Soon
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.285-291
    • /
    • 2008
  • Active Queue Management(AQM) has been widely used for congestion avoidance in Transmission Control Protocol(TCP) networks. Although numerous AQM schemes have been proposed to regulate a queue size close to a reference level, most of them are incapable of adequately adapting to TCP network dynamics due to TCP's non-linearity and time-varying stochastic properties. To alleviate these problems, we introduce an AQM technique based on a dynamic neural network using the Back-Propagation(BP) algorithm. The dynamic neural network is designed to perform as a robust adaptive feedback controller for TCP dynamics after an adequate training period. We evaluate the performances of the proposed neural network AQM approach using simulation experiments. The proposed approach yields superior performance with faster transient time, larger throughput, and higher link utilization compared to two existing schemes: Random Early Detection(RED) and Proportional-Integral(PI)-based AQM. The neural AQM outperformed PI control and RED, especially in transient state and TCP dynamics variation.

Modeling sulfuric acid induced swell in carbonate clays using artificial neural networks

  • Sivapullaiah, P.V.;Guru Prasad, B.;Allam, M.M.
    • Geomechanics and Engineering
    • /
    • v.1 no.4
    • /
    • pp.307-321
    • /
    • 2009
  • The paper employs a feed forward neural network with back-propagation algorithm for modeling time dependent swell in clays containing carbonate in the presence of sulfuric acid. The oedometer swell percent is estimated at a nominal surcharge pressure of 6.25 kPa to develop 612 data sets for modeling. The input parameters used in the network include time, sulfuric acid concentration, carbonate percentage, and liquid limit. Among the total data sets, 280 (46%) were assigned to training, 175 (29%) for testing and the remaining 157 data sets (25%) were relegated to cross validation. The network was programmed to process this information and predict the percent swell at any time, knowing the variable involved. The study demonstrates that it is possible to develop a general BPNN model that can predict time dependent swell with relatively high accuracy with observed data ($R^2$=0.9986). The obtained results are also compared with generated non-linear regression model.

Efficient Neural Network for Downscaling climate scenarios

  • Moradi, Masha;Lee, Taesam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.157-157
    • /
    • 2018
  • A reliable and accurate downscaling model which can provide climate change information, obtained from global climate models (GCMs), at finer resolution has been always of great interest to researchers. In order to achieve this model, linear methods widely have been studied in the past decades. However, nonlinear methods also can be potentially beneficial to solve downscaling problem. Therefore, this study explored the applicability of some nonlinear machine learning techniques such as neural network (NN), extreme learning machine (ELM), and ELM autoencoder (ELM-AE) as well as a linear method, least absolute shrinkage and selection operator (LASSO), to build a reliable temperature downscaling model. ELM is an efficient learning algorithm for generalized single layer feed-forward neural networks (SLFNs). Its excellent training speed and good generalization capability make ELM an efficient solution for SLFNs compared to traditional time-consuming learning methods like back propagation (BP). However, due to its shallow architecture, ELM may not capture all of nonlinear relationships between input features. To address this issue, ELM-AE was tested in the current study for temperature downscaling.

  • PDF

Fuzzy Division Method to Minimize the Modeling Error in Neural Network (뉴럴 네트웍 모델링에서 에러를 최소화하기 위한 퍼지분할법)

  • Chung, Byeong-Mook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.110-118
    • /
    • 1997
  • Multi-layer neural networks with error back-propagation algorithm have a great potential for identifying nonlinear systems with unknown characteristics. However, because they have a demerit that the speed of convergence is too slow, various methods for improving the training characteristics of backpropagition networks have been proposed. In this paper, a fuzzy division method is proposed to improve the convergence speed, which can find out an effective fuzzy division by the tuning of membership function and independently train each neural network after dividing the network model into several parts. In the simulations, the proposed method showed that the optimal fuzzy partitions could be found from the arbitray initial ones and that the convergence speed was faster than the traditional method without the fuzzy division.

  • PDF

A Robust Backpropagation Algorithm and It's Application (문자인식을 위한 로버스트 역전파 알고리즘)

  • Oh, Kwang-Sik;Kim, Sang-Min;Lee, Dong-No
    • Journal of the Korean Data and Information Science Society
    • /
    • v.8 no.2
    • /
    • pp.163-171
    • /
    • 1997
  • Function approximation from a set of input-output pairs has numerous applications in scientific and engineering areas. Multilayer feedforward neural networks have been proposed as a good approximator of nonlinear function. The back propagation(BP) algorithm allows multilayer feedforward neural networks to learn input-output mappings from training samples. It iteratively adjusts the network parameters(weights) to minimize the sum of squared approximation errors using a gradient descent technique. However, the mapping acquired through the BP algorithm may be corrupt when errorneous training data we employed. When errorneous traning data are employed, the learned mapping can oscillate badly between data points. In this paper we propose a robust BP learning algorithm that is resistant to the errorneous data and is capable of rejecting gross errors during the approximation process, that is stable under small noise perturbation and robust against gross errors.

  • PDF

Piezocone Neural Network Model for Estimation of Preconsolidation Pressure of Korean Soft Soils (국내 연약지반의 선행압밀하중 추정을 위한 피에조콘 인공신경망 모델)

  • 김영상
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.77-87
    • /
    • 2004
  • In this paper a back-propagation neural network model is developed to estimate the preconsolidation pressure of Korean soft soils based on 176 oedometer tests and 63 piezocone test results, which were compiled from 11 sites - western and southern parts of Korea. Only 147 data were used for the training of the neural network and 29 data, which were not used during the training phase, were used for the verification of trained network. Empirical and theoretical models were compared with the developed neural network model. A simple 4-4-9-1 multi-layered neural network has been developed. The cone tip resistance $q_T$ penetration pore pressure $u_2$, total overburden pressure $\sigma_{vo}$ and effective overburden pressure $\sigma'_{vo}$ were selected as input variables. The developed neural network model was validated by comparing the prediction results of the proposed neural network model for the new data which were not used for the training of the model with the measured preconsolidation pressures. It can also predict more precise and reliable preconsolidation pressures than the analytical and empirical model. Furthermore, it can be carefully concluded that neural network model can be used as a generalized model for prediction of preconsolidation pressure throughout Korea since developed model shows good performance for the new data which were not used in both training and testing data.

Hydrological Forecasting Based on Hybrid Neural Networks in a Small Watershed (중소하천유역에서 Hybrid Neural Networks에 의한 수문학적 예측)

  • Kim, Seong-Won;Lee, Sun-Tak;Jo, Jeong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.4
    • /
    • pp.303-316
    • /
    • 2001
  • In this study, Radial Basis Function(RBF) Neural Networks Model, a kind of Hybrid Neural Networks was applied to hydrological forecasting in a small watershed. RBF Neural Networks Model has four kinds of parameters in it and consists of unsupervised and supervised training patterns. And Gaussian Kernel Function(GKF) was used among many kinds of Radial Basis Functions(RBFs). K-Means clustering algorithm was applied to optimize centers and widths which ate the parameters of GKF. The parameters of RBF Neural Networks Model such as centers, widths weights and biases were determined by the training procedures of RBF Neural Networks Model. And, with these parameters the validation procedures of RBF Neural Networks Model were carried out. RBF Neural Networks Model was applied to Wi-Stream basin which is one of the IHP Representative basins in South Korea. 10 rainfall events were selected for training and validation of RBF Neural Networks Model. The results of RBF Neural Networks Model were compared with those of Elman Neural Networks(ENN) Model. ENN Model is composed of One Step Secant BackPropagation(OSSBP) and Resilient BackPropagation(RBP) algorithms. RBF Neural Networks shows better results than ENN Model. RBF Neural Networks Model spent less time for the training of model and can be easily used by the hydrologists with little background knowledge of RBF Neural Networks Model.

  • PDF

A Novel Scheme for detection of Parkinson’s disorder from Hand-eye Co-ordination behavior and DaTscan Images

  • Sivanesan, Ramya;Anwar, Alvia;Talwar, Abhishek;R, Menaka.;R, Karthik.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4367-4385
    • /
    • 2016
  • With millions of people across the globe suffering from Parkinson's disease (PD), an objective, confirmatory test for the same is yet to be developed. This research aims to develop a system which can assist the doctor in objectively saying whether the patient is normal or under risk of PD. The proposed work combines the eye-hand co-ordination behaviour with the DaTscan images in order to determine the risk of this disorder. Initially, eye-hand coordination level of the patient is assessed through a hardware module. Then, the DaTscan image is analysed and used to extract certain geometrical parameters which shall indicate the presence of PD. These parameters are then finally fed into a Multi-Layer Perceptron Neural Network using Levenberg-Marquardt (LM) Back propagation training algorithm. Experimental results indicate that the proposed system exhibits an accuracy of around 93%.

Rotor Resistance Estimation of Induction Motor by ANN (ANN에 의한 유도전동기의 회전자 저항 추정)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.10
    • /
    • pp.27-34
    • /
    • 2006
  • This paper proposes a new method of on-line estimation for rotor resistance of the induction motor in the indirect vector controlled drive, using artificial neural network (ANN). The back propagation algorithm is used for training of the neural networks. The error between the desired state variable of an induction motor and actual state variable of a neural network model is back propagated to adjust the weight of a neural network model, so that the actual state variable tracks the desired value. The performance of rotor resistance estimator and torque and flux responses of drive, together with these estimators, are investigated variations rotor resistance from their nominal values. The rotor resistance are estimated analytically, using the proposed ANN in a vector controlled induction motor drive.

Learning Module Design for Neural Network Processor(ERNIE) (신경회로망칩(ERNIE)을 위한 학습모듈 설계)

  • Jung, Je-Kyo;Kim, Yung-Joo;Dong, Sung-Soo;Lee, Chong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.171-174
    • /
    • 2003
  • In this paper, a Learning module for a reconfigurable neural network processor(ERNIE) was proposed for an On-chip learning. The existing reconfigurable neural network processor(ERNIE) has a much better performance than the software program but it doesn't support On-chip learning function. A learning module which is based on Back Propagation algorithm was designed for a help of this weak point. A pipeline structure let the learning module be able to update the weights rapidly and continuously. It was tested with five types of alphabet font to evaluate learning module. It compared with C programed neural network model on PC in calculation speed and correctness of recognition. As a result of this experiment, it can be found that the neural network processor(ERNIE) with learning module decrease the neural network training time efficiently at the same recognition rate compared with software computing based neural network model. This On-chip learning module showed that the reconfigurable neural network processor(ERNIE) could be a evolvable neural network processor which can fine the optimal configuration of network by itself.

  • PDF