• Title/Summary/Keyword: Back Propagation Algorithms

Search Result 138, Processing Time 0.033 seconds

Neural Network Modeling of PECVD SiN Films and Its Optimization Using Genetic Algorithms

  • Han, Seung-Soo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.87-94
    • /
    • 2001
  • Silicon nitride films grown by plasma-enhanced chemical vapor deposition (PECVD) are useful for a variety of applications, including anti-reflecting coatings in solar cells, passivation layers, dielectric layers in metal/insulator structures, and diffusion masks. PECVD systems are controlled by many operating variables, including RF power, pressure, gas flow rate, reactant composition, and substrate temperature. The wide variety of processing conditions, as well as the complex nature of particle dynamics within a plasma, makes tailoring SiN film properties very challenging, since it is difficult to determine the exact relationship between desired film properties and controllable deposition conditions. In this study, SiN PECVD modeling using optimized neural networks has been investigated. The deposition of SiN was characterized via a central composite experimental design, and data from this experiment was used to train and optimize feed-forward neural networks using the back-propagation algorithm. From these neural process models, the effect of deposition conditions on film properties has been studied. A recipe synthesis (optimization) procedure was then performed using the optimized neural network models to generate the necessary deposition conditions to obtain several novel film qualities including high charge density and long lifetime. This optimization procedure utilized genetic algorithms, hybrid combinations of genetic algorithm and Powells algorithm, and hybrid combinations of genetic algorithm and simplex algorithm. Recipes predicted by these techniques were verified by experiment, and the performance of each optimization method are compared. It was found that the hybrid combinations of genetic algorithm and simplex algorithm generated recipes produced films of superior quality.

  • PDF

The Design of Genetically Optimized Multi-layer Fuzzy Neural Networks

  • Park, Byoung-Jun;Park, Keon-Jun;Lee, Dong-Yoon;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.660-665
    • /
    • 2004
  • In this study, a new architecture and comprehensive design methodology of genetically optimized Multi-layer Fuzzy Neural Networks (gMFNN) are introduced and a series of numeric experiments are carried out. The gMFNN architecture results from a synergistic usage of the hybrid system generated by combining Fuzzy Neural Networks (FNN) with Polynomial Neural Networks (PNN). FNN contributes to the formation of the premise part of the overall network structure of the gMFNN. The consequence part of the gMFNN is designed using PNN. The optimization of the FNN is realized with the aid of a standard back-propagation learning algorithm and genetic optimization. The development of the PNN dwells on the extended Group Method of Data Handling (GMDH) method and Genetic Algorithms (GAs). To evaluate the performance of the gMFNN, the models are experimented with the use of a numerical example.

A Study on Fault Detection of a Turboshaft Engine Using Neural Network Method

  • Kong, Chang-Duk;Ki, Ja-Young;Lee, Chang-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.100-110
    • /
    • 2008
  • It is not easy to monitor and identify all engine faults and conditions using conventional fault detection approaches like the GPA (Gas Path Analysis) method due to the nature and complexity of the faults. This study therefore focuses on a model based diagnostic method using Neural Network algorithms proposed for fault detection on a turbo shaft engine (PW 206C) selected as the power plant for a tilt rotor type unmanned aerial vehicle (Smart UAV). The model based diagnosis should be performed by a precise performance model. However component maps for the performance model were not provided by the engine manufacturer. Therefore they were generated by a new component map generation method, namely hybrid method using system identification and genetic algorithms that identifies inversely component characteristics from limited performance deck data provided by the engine manufacturer. Performance simulations at different operating conditions were performed on the PW206C turbo shaft engine using SIMULINK. In order to train the proposed BPNN (Back Propagation Neural Network), performance data sets obtained from performance analysis results using various implanted component degradations were used. The trained NN system could reasonably detect the faulted components including the fault pattern and quantity of the study engine at various operating conditions.

The Design of Multi-FNN Model Using HCM Clustering and Genetic Algorithms and Its Applications to Nonlinear Process (HCM 클러스터링과 유전자 알고리즘을 이용한 다중 FNN 모델 설계와 비선형 공정으로의 응용)

  • 박호성;오성권;김현기
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.47-50
    • /
    • 2000
  • In this paper, an optimal identification method using Multi-FNN(Fuzzy-Neural Network) is proposed for model ins of nonlinear complex system. In order to control of nonlinear process with complexity and uncertainty of data, proposed model use a HCM clustering algorithm which carry out the input-output data preprocessing function and Genetic Algorithm which carry out optimization of model. The proposed Multi-FNN is based on Yamakawa's FNN and it uses simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rules. HCM clustering method which carry out the data preprocessing function for system modeling, is utilized to determine the structure of Multi-FNN by means of the divisions of input-output space. Also, the parameters of Multi-FNN model such as apexes of membership function, learning rates and momentum coefficients are adjusted using genetic algorithms. Also, a performance index with a weighting factor is presented to achieve a sound balance between approximation and generalization abilities of the model, To evaluate the performance of the proposed model, we use the time series data for gas furnace and the numerical data of nonlinear function.

  • PDF

Recognition of Disease in Medical Image (의료영상의 질환인식)

  • 신승수;이상복;조용환
    • The Journal of the Korea Contents Association
    • /
    • v.1 no.1
    • /
    • pp.8-14
    • /
    • 2001
  • In this paper, we suggests a algorithms of recognizing the disease region by extracting particular organ from medical image. This method can extract liver region in spite of input image including many organs and charged format by using multi-threshold of feed-back-structure for segmentation liver region, and suggest the recognition of disease region in extracted liver, using multi-neural network structured by RBF and BP, overcoming the defect of single-neural network. The algorithm in this paper is proficient in adaptation for a multi form change of input medical image. This algorithm can be used at tole-medicine through automatic recognition after recognizing of the disease region by real-tire medical Image.

  • PDF

A Study on the Forecasting of Daily Streamflow using the Multilayer Neural Networks Model (다층신경망모형에 의한 일 유출량의 예측에 관한 연구)

  • Kim, Seong-Won
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.5
    • /
    • pp.537-550
    • /
    • 2000
  • In this study, Neural Networks models were used to forecast daily streamflow at Jindong station of the Nakdong River basin. Neural Networks models consist of CASE 1(5-5-1) and CASE 2(5-5-5-1). The criteria which separates two models is the number of hidden layers. Each model has Fletcher-Reeves Conjugate Gradient BackPropagation(FR-CGBP) and Scaled Conjugate Gradient BackPropagation(SCGBP) algorithms, which are better than original BackPropagation(BP) in convergence of global error and training tolerance. The data which are available for model training and validation were composed of wet, average, dry, wet+average, wet+dry, average+dry and wet+average+dry year respectively. During model training, the optimal connection weights and biases were determined using each data set and the daily streamflow was calculated at the same time. Except for wet+dry year, the results of training were good conditions by statistical analysis of forecast errors. And, model validation was carried out using the connection weights and biases which were calculated from model training. The results of validation were satisfactory like those of training. Daily streamflow forecasting using Neural Networks models were compared with those forecasted by Multiple Regression Analysis Mode(MRAM). Neural Networks models were displayed slightly better results than MRAM in this study. Thus, Neural Networks models have much advantage to provide a more sysmatic approach, reduce model parameters, and shorten the time spent in the model development.

  • PDF

Human activity classification using Neural Network

  • Sharma, Annapurna;Lee, Young-Dong;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.229-232
    • /
    • 2008
  • A Neural network classification of human activity data is presented. The data acquisition system involves a tri-axial accelerometer in wireless sensor network environment. The wireless ad-hoc system has the advantage of small size, convenience for wearability and cost effectiveness. The system can further improve the range of user mobility with the inclusion of ad-hoc environment. The classification is based on the frequencies of the involved activities. The most significant Fast Fourier coefficients, of the acceleration of the body movement, are used for classification of the daily activities like, Rest walk and Run. A supervised learning approach is used. The work presents classification accuracy with the available fast batch training algorithms i.e. Levenberg-Marquardt and Resilient back propagation scheme is used for training and calculation of accuracy.

  • PDF

Design of maneuvering target tracking system using neural network as an input estimator (입력 추정기로서의 신경회로망을 이용한 기동 표적 추적 시스템 설계)

  • 김행구;진승희;박진배;주영훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.524-527
    • /
    • 1997
  • Conventional target tracking algorithms based on the linear estimation techniques perform quite efficiently when the target motion does not involve maneuvers. Target maneuvers involving short term accelerations, however, cause a bias in the measurement sequence. Accurate compensation for the bias requires processing more samples of which adds to the computational complexity. The primary motivation for employing a neural network for this task comes from the efficiency with which more features can be as inputs for bias compensation. A system architecture that efficiently integrates the fusion capabilities of a trained multilayer neural net with the tracking performance of a Kalman filter is described. The parallel processing capability of a properly trained neural network can permit fast processing of features to yield correct acceleration estimates and hence can take the burden off the primary Kalman filter which still provides the target position and velocity estimates.

  • PDF

Experimental Studies of neural Network Control Technique for Nonlinear Systems (신경회로망을 이용한 비선형 시스템 제어의 실험적 연구)

  • Jeong, Seul;Yim, Sun-Bin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.11
    • /
    • pp.918-926
    • /
    • 2001
  • In this paper, intelligent control method using neural network as a nonlinear controller is presented. Simulation studies for three link rotary robot are performed. Neural network controller is implemented on DSP board in PC to make real time computing possible. On-line training algorithms for neural network control are proposed. As a test-bed, a large x-y table was build and interface with PC has been implemented. Experiments such as inverted pendulum control and large x-y table position control are performed. The results for different PD controller gains with neural network show excellent position tracking for circular trajectory compared with those for PD controller only. Neural control scheme also works better for controlling inverted pendulum on x-y table.

  • PDF

Dynamics Analysis of Industrial Robot Using Neural Network (뉴럴네트워크를 이용한 산업용 로봇의 동특성 해석)

  • Lee, Jin
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.62-67
    • /
    • 1997
  • This paper reprdsents a new scheme of neural network control system analysis the robustues of robot manipulator using digital signal processors. Digtal signal processors, DSPs, are micro-processors that are particularly developed for fast numerical computations involving sums and products of variables. Digital version of most advanced control algorithms can be defined as sums and products of measured variables, thus it can be programmed and executed through DSPs. In additions, DSPs are a s fast in computation as most 32-bit micro-processors and yet at a fraction of their prices. These features make DSPs a viable computational tool in digital implementation of sophisticated controllers. Durng past decade it was proposed the well-established theorys for the adaptive control of linear systems, but there exists relatively little general theory for the adaptive control of nonlinear systems. The proposed neuro network control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method.

  • PDF