Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.18
no.6
/
pp.37-44
/
2004
This paper represents a new approach for the protective relay of power transmission lines using a Artificial Neural Network(ANN). A different fault m transmission lines need to be detected classified and located accurately and cleared as fast as possible. However, The protection range of the distance relay is always designed on the basis of fixed settings, and unfortunately these approach do not have the ability to adapt dynamically to the system operating condition. ANN is suitable for the adaptive relaying and the detection of complex faults. The backpropagation algerian based multi-layer protection is utilized for the teaming process. It allows to make control to various protection functions. As expected, the simulation result demonstrate that this approach is useful and satisfactory.
Journal of the Korea Institute of Information and Communication Engineering
/
v.22
no.3
/
pp.418-424
/
2018
Detection and classification of underwater targets is an important issue for both military and non-military purposes. Recently, many performance improvements are being reported in the field of pattern recognition with the development of deep learning technology. Among the results, DBN showed good performance when used for pre-training of DNN. In this paper, DBN was used for the classification of underwater targets using active sonar, and the results are compared with that of the conventional BPNN. We synthesized active sonar target signals using 3-dimensional highlight model. Then, features were extracted based on FrFT. In the single aspect based experiment, the classification result using DBN was improved about 3.83% compared with the BPNN. In the case of multi-aspect based experiment, a performance of 95% or more is obtained when the number of observation sequence exceeds three.
Journal of the Korea Academia-Industrial cooperation Society
/
v.16
no.5
/
pp.3477-3483
/
2015
A reasonable process for the activity duration estimation is required for the successful construction management because it directly affects the entire construction duration and budget. However, the activity duration is being generally estimated by the experience of the construction manager. This study suggests an estimation model of construction activity duration using neural network theory. This model estimates the activity duration by considering both the quantitative and qualitative elements, and the model is verified by a case study. Because the suggested model estimates the activity duration by a reasonable schedule plan, it is expected to reduce the error between planning duration and actual duration in a construction project.
The back propagation algorithm took a long time to learn the input patterns and was difficult to train the additional or repeated learning patterns. So Aleksander proposed the binary neural network which could overcome the disadvantages of BP Network. But it had the limitation of repeated learning and was impossible to extract a generalized pattern. In this paper, we proposed a dynamic 3 dimensional Neuro System which was consisted of a learning network which was based on weightless neural network and a feedback module which could accumulate the characteristic. The proposed system was enable to train additional and repeated patterns. Also it could be produced a generalized pattern by putting a proper threshold into each learning-net's discriminator which was resulted from learning procedures. And then we reused the generalized pattern to elevate the recognition rate. In the last processing step to decide right category, we used maximum response detector. We experimented using the MNIST database of NIST and got 99.3% of right recognition rate for training data.
Journal of the Institute of Convergence Signal Processing
/
v.4
no.3
/
pp.49-54
/
2003
In this paper, we propose a controller with the self-organizing neural network compensator for compensating PID controller's response. PID controller has simple design method but needs a lot of trials and errors to determine coefficients. A neural network control method does not have optimal structure as the parameters are pre-specified by designers. In this paper, to solve this problem, we use a self-organizing neural network which has Back Propagation Network algorithm using a Gaussian Potential Function as an activation function of hidden layer nodes for compensating PID controller's output. Self-Organizing Neural Network's learning is proceeded by Gaussian Function's Mean, Variance and number which are automatically adjusted. As the results of simulation through the second order plant, we confirmed that the proposed controller get a good response compare with a PID controller. And we implemented the of controller performance hydraulic servo motor system using the DSP processor. Then we observed an experimental results.
The Transactions of the Korea Information Processing Society
/
v.6
no.7
/
pp.1980-1987
/
1999
Restored image is always lower quality than original one due to distortion and noise. The purpose of image restoration is to improve the image quality by fixing the noise or distortion information. One category of spatial filters for image restoration is linear filter. This filter algorithm is easily implemented and can be suppressed the Gaussian noise effectively, but not so good performance for spot or impulse noise. In this paper, we propose the nonlinear spatial filter algorithm for image restoration called the optimal adaptive multistage filter(OAMF). The OAMF is used to reduce the filtering time, increases the noise suppression ratio and preserves the edge information. The OAMF optimizes the adaptive multistage filter(AMF) by using weight learning algorithm of back-propagation learning algorithm. Simulation results of this filter algorithm are presented and discussed.
The objectives of this study are to develop the total maximum daily loads simulation system, TOLOS that is capable of estimating annual nonpoint source pollution from small watersheds, to monitor the hydrology and water quality of the Balkan HP#6 watershed, and to validate TOLOS with the field data. TOLOS consists of three subsystems: the input data processor based on a geographic information system, the models, and the post processor. Land use pattern at the tested watershed was classified from the Landsat TM data using the artificial neutral network model that adopts an error back propagation algorithm. Paddy field components were added to SWAT model to simulate water balance at irrigated paddy blocks. SWAT model parameters were obtained from the GIS data base, and additional parameters calibrated with field data. TOLOS was then tested with ungauged conditions. The simulated runoff was reasonably good as compared with the observed data. And simulated water quality parameters appear to be reasonably comparable to the field data.
Journal of the Korean Society for Nondestructive Testing
/
v.21
no.1
/
pp.46-53
/
2001
The purpose of this paper is to develop a new feature selection method for AE signal classification. The neural network of back propagation algorithm is used. The proposed feature selection method uses the difference between feature coordinates in feature space. This method is compared with the existing methods such as Fisher's criterion, class mean scatter criterion and eigenvector analysis in terms of the recognition rate and the convergence speed, using the signals from the defects in welding zone of austenitic stainless steel and in the metal contact of the rotary compressor. The proposed feature selection methods such as 2-D and 3-D criteria showed better results in the recognition rate than the existing ones.
Journal of the Korean Society for Nondestructive Testing
/
v.21
no.1
/
pp.54-61
/
2001
A software package to classify acoustic emission (AE) signals using the wavelet transform and the neural network was developed Both of the continuous and the discrete wavelet transforms are considered, and the error back-propagation neural network is adopted as m artificial neural network algorithm. The signals acquired during the 3-point bending test of specimens which have artificial defects on weld zone are used for the classification of the defects. Features are extracted from the time-frequency plane which is the result of the wavelet transform of signals, and the neural network classifier is tamed using the extracted features to classify the signals. It has been shown that the developed software package is useful to classify AE signals. The difference between the classification results by the continuous and the discrete wavelet transforms is also discussed.
Journal of the Korean Society for Nondestructive Testing
/
v.18
no.6
/
pp.464-476
/
1998
Determination of location, shape and size of a flaw from its eddy current testing signal is one of the fundamental issues in eddy current nondestructive evaluation of steam generator tubes. Here, we propose an approach to this problem; an inversion of eddy current flaw signal using neural networks trained by finite element model-based synthetic signatures. Total 216 eddy current signals from four different types of axisymmetric flaws in tubes are generated by finite element models of which the accuracy is experimentally validated. From each simulated signature, total 24 eddy current features are extracted and among them 13 features are finally selected for flaw characterization. Based on these features, probabilistic neural networks discriminate flaws into four different types according to the location and the shape, and successively back propagation neural networks determine the size parameters of the discriminated flaw.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.