• Title/Summary/Keyword: Bacillus expression

Search Result 425, Processing Time 0.021 seconds

Cloning of a Novel vpr Gene Encoding a Minor Fibrinolytic Enzyme from Bacillus subtilis SJ4 and the Properties of Vpr

  • Yao, Zhuang;Meng, Yu;Le, Huong Giang;Lee, Se Jin;Jeon, Hye Sung;Yoo, Ji Yeon;Kim, Hyun-Jin;Kim, Jeong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.11
    • /
    • pp.1720-1728
    • /
    • 2020
  • We have previously characterized AprESJ4, the major fibrinolytic enzyme from Bacillus subtilis SJ4 (Yao et al., 2019). During that study, we observed a 68 kDa protein with fibrinolytic activity. In this study, we cloned the gene (vprSJ4) encoding the 68 kDa protein, a mature Vpr and minor protease secreted by Bacillus species. vprSJ4 encodes a preproenzyme consisting of 810 amino acids (aa) including signal sequence (28 aa) and prosequence (132 aa). The mature enzyme (650 aa) has a predicted molecular weight of 68,467.35. Unlike Vprs from other B. subtilis strains, VprSJ4 has 4 additional amino acids (DEFA) at the C-terminus. vprSJ4 was overexpressed in Escherichia coli. PreproVprSJ4 was localized in inclusion bodies, and subjected to in vitro renaturation and purification by an affinity column. SDS-PAGE and western blot showed that autoprocessing of preproVprSJ4 occurred and 68 kDa and smaller proteins were produced. The optimum pH and temperature of the recombinant VprSJ4 were pH 7.0 and 40℃, respectively. Kinetic parameters of recombinant VprSJ4 were measured by using an artificial substrate, N-succinyl-ala-ala-pro-phe-p-nitroanilide. Coexpression of vprSJ4 and aprESJ4 using pHY300PLK increased the fibrinolytic activity a further 117% when compared with aprESJ4 single expression using the same vector in B. subtilis WB600.

Immunomodulating Effect of Extract of Cheonggukjang Fermented with Bacillus amyloliquefaciens (SRCM100730) on RAW 264.7 Macrophages (Bacillus amyloliquefaciens(SRCM 100730)로 발효된 청국장 추출물의 RAW 264.7 대식세포 면역증강 활성)

  • Choo, Seung Bin;Yang, Hui;Jeong, Do-Yuon;Jeong, Seong-Yeop;Ryu, Myeong Seon;Oh, Kwang-Hoon;Yoo, Yung Choon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.11
    • /
    • pp.1300-1307
    • /
    • 2017
  • Cheonggukjang is well known as a traditional fermented food in Korea and has various biological activity. In this study, immune-enhancing activity of extract of cheonggukjang fermented with Bacillus amyloliquefaciens (SRCM100730) was examined in RAW 264.7 murine macrophages. Treatment with extract augmented production of nitric oxide (NO) and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) from RAW 264.7 macrophages in a dose-dependent manner. Similarly, increased mRNA expression of inducible nitric oxide synthase (iNOS) and $TNF-{\alpha}$ was observed. In addition, the extract synergistically enhanced production of NO and $TNF-{\alpha}$ from lipopolysaccharide (LPS)-stimulated macrophages. Analysis of intracellular pathways revealed that the immune-enhancing activity of cheonggukjang extract was related to activation of mitogen-activated protein kinases (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$). These results suggest that cheonggukjang fermented with B. amyloliquefaciens (SRCM100730) is a beneficial food effective for activation of immune responses.

Expression of the Promoter for the Maltogenic Amylase Gene in Bacillus subtilis 168

  • Kim Do-Yeon;Cha Choon-Hwan;Oh Wan-Seok;Yoon Young-Jun;Kim Jung-Wan
    • Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.319-327
    • /
    • 2004
  • An additional amylase, besides the typical $\alpha-amylase,$ was detected for the first time in the cytoplasm of B. subtilis SUH4-2, an isolate from Korean soil. The corresponding gene (bbmA) encoded a malto­genic amylase (MAase) and its sequence was almost identical to the yvdF gene of B. subtilis 168, whose function was unknown. Southern blot analysis using bbmA as the probe indicated that this gene was ubiquitous among various B. subtilis strains. In an effort to understand the physiological function of the bbmA gene in B. subtilis, the expression pattern of the gene was monitored by measuring the $\beta-galactosidase$ activity produced from the bbmA promoter fused to the amino terminus of the lacZ struc­tural gene, which was then integrated into the amyE locus on the B. subtilis 168 chromosome. The pro­moter was induced during the mid-log phase and fully expressed at the early stationary phase in defined media containing $\beta--cyclodextrin\;(\beta-CD),$ maltose, or starch. On the other hand, it was kept repressed in the presence of glucose, fructose, sucrose, or glycerol, suggesting that catabolite repression might be involved in the expression of the gene. Production of the $\beta-CD$ hydrolyzing activity was impaired by the spo0A mutation in B. subtilis 168, indicating the involvement of an additional regu­latory system exerting control on the promoter. Inactivation of yvdF resulted in a significant decrease of the $\beta-CD$ hydrolyzing activity, if not all. This result implied the presence of an additional enzyme(s) that is capable of hydrolyzing $\beta-CD$ in B. subtilis 168. Based on the results, MAase encoded by bbmA is likely to be involved in maltose and $\beta-CD$ utilization when other sugars, which are readily usable as an energy source, are not available during the stationary phase.

Antimicrobial activities and skin barrier improvement effect of Eruca sativa extract (루꼴라(Eruca sativa) 추출물의 항균활성과 피부장벽 개선 효과)

  • Kim, Bora;Kim, Hyun-Soo
    • Food Science and Preservation
    • /
    • v.24 no.2
    • /
    • pp.320-324
    • /
    • 2017
  • Eruca sativa is a rocket plant and a member of the Brassicaceae, which is considered to be an important chemo-preventive plant family. Although Eruca sativa has positive biological effects, the effect of Eruca sativa extract (ES) on improvement of skin barrier function has not been reported. In this study, we investigated the applicability of functional materials by examining a variety of physiological activities of Eruca sativa extract. ES showed anti-microbial activities against Bacillus subtilis, Escherichia coli, and Candida albicans. In particular, antimicrobial activities of ES against B. subtilis was the highest. Additionally, immunohistochemical analysis of protein marker related to keratinocyte differentiation was determined. The treatment by ES (50 mg/L) showed a significant increase of involucrin expression compared with treatment by 0.1% DMSO as a control in skin equivalents, the ES-treated group showed similar level in the expression of involucrin compared to the group treated with the same concentration of WY14643 in $EpiDerm^{TM}$, a three-dimensional model of skin equivalents. These results indicate that ES promotes the expression of protein related to barrier properties of the skin. Therefore, ES may be an effective ingredient for skin barrier improvement.

Predictive modeling of the compressive strength of bacteria-incorporated geopolymer concrete using a gene expression programming approach

  • Mansouri, Iman;Ostovari, Mobin;Awoyera, Paul O.;Hu, Jong Wan
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.319-332
    • /
    • 2021
  • The performance of gene expression programming (GEP) in predicting the compressive strength of bacteria-incorporated geopolymer concrete (GPC) was examined in this study. Ground-granulated blast-furnace slag (GGBS), new bacterial strains, fly ash (FA), silica fume (SF), metakaolin (MK), and manufactured sand were used as ingredients in the concrete mixture. For the geopolymer preparation, an 8 M sodium hydroxide (NaOH) solution was used, and the ambient curing temperature (28℃) was maintained for all mixtures. The ratio of sodium silicate (Na2SiO3) to NaOH was 2.33, and the ratio of alkaline liquid to binder was 0.35. Based on experimental data collected from the literature, an evolutionary-based algorithm (GEP) was proposed to develop new predictive models for estimating the compressive strength of GPC containing bacteria. Data were classified into training and testing sets to obtain a closed-form solution using GEP. Independent variables for the model were the constituent materials of GPC, such as FA, MK, SF, and Bacillus bacteria. A total of six GEP formulations were developed for predicting the compressive strength of bacteria-incorporated GPC obtained at 1, 3, 7, 28, 56, and 90 days of curing. 80% and 20% of the data were used for training and testing the models, respectively. R2 values in the range of 0.9747 and 0.9950 (including train and test dataset) were obtained for the concrete samples, which showed that GEP can be used to predict the compressive strength of GPC containing bacteria with minimal error. Moreover, the GEP models were in good agreement with the experimental datasets and were robust and reliable. The models developed could serve as a tool for concrete constructors using geopolymers within the framework of this research.

Comparison of Jayangdaebo-tang before and after fermentation on antioxidant, anti-inflammatory and anticancer effects (자양대보탕(滋養大補湯)의 발효 전·후 항염증, 항암, 항산화 효과 비교 연구)

  • Juyoung Kim;Eunseo Hong;Yong-Ki Park;Hyo Won Jung
    • The Korea Journal of Herbology
    • /
    • v.38 no.5
    • /
    • pp.49-60
    • /
    • 2023
  • Objectives : In this study, it was investigated the anti-inflammatory, anticancer, and antioxidant effects of Jayangdaebo-tang (JDT) consisting of twelve herbs before and after fermentation. Methods : JDT extract was fermented using the Lactoplantibacillus plantanum (JDT-L), Bacillus subtilis (JDT-B), and L. plantanum plus B. subtilis (JDT-L+B). The effects of each extract were measured in LPS-stimulated RAW264.7 cells, MCF-7 breast cancer and A549 lung cancer cells, and H2O2-stimulated HepG2 cells. Results : The extracts of JDT-L, JDT-B and JDT-L+B at 1 ㎎/㎖ decreased significantly the levels of nitric oxide (NO) in LPS-treated RAW264.7 cells and also inhibited the expression of iNOS and COX-2, and the phosphorylation of ERK and NF-κB. The JDT-L+B extract decreased significantly the expression of apoptotic proteins, Bax, cleaved caspase-3, and PARP in MCF-7 and A549 cancer cells. The JDT-L, JDT-B and JDT-L+B extracts increased significantly the cell viability in H2O2-stimulated HepG2 cells and the JDT-L+B extract decreased significantly the expression of SOD, catalase, HO-1, and NRF-2. Among fermented JDT extracts, JDT-L+B was the best effective on response of macrophage inflammation, cancer cell apoptosis, and liver cell damage. Conclusions : Our results were suggested that the fermentation can be used as a useful way to enhance the biological activity of JDT.

Variations in Protein Glycosylation in Hansenula polymorpha Depending on Cell Culture Stage

  • Kim, So-Young;Sohn, Jung-Hoon;Pyun, Yu-Ryang;Choi, Eui-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.12
    • /
    • pp.1949-1954
    • /
    • 2007
  • A simple way to prevent protein hyperglycosylation in Hansenula polymorpha was found. When glucose oxidase from Aspergillus niger and carboxymethyl cellulase from Bacillus subtilis were expressed under the control of an inducible methanol oxidase (MOX) promoter using methanol as a carbon source, hyperglycosylated forms occurred. In contrast, MOX-repressing carbon sources (e.g., glucose, sorbitol, and glycerol) greatly reduced the extent of hyperglycosylation. Carbon source starvation of the cells also reduced the level of glycosylation, which was reversed to hyperglycosylation by the resumption of cell growth. It was concluded that the proteins expressed under actively growing conditions are produced as hyperglycosylated forms, whereas those under slow or nongrowing conditions are as short-glycosylated forms. The prevention of hyperglycosylation in the Hansenula polymorpha expression system constitutes an additional advantage over the traditional Saccharomyces cerevisiae system in recombinant production of glycosylated proteins.

Molecular Cloning of a CMCase Gene from Alkalophilic sp. and Its Expression in Escherichia coli

  • Yu, Ju-Hyun;Kong, In-Soo;Kim, Jin-Man;Park, Yoon-Suk
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1986.12a
    • /
    • pp.529.1-529
    • /
    • 1986
  • For isolation of the CMCase gene of the alkalophilic Bacillus sp. strain N-4 to analyze their genetic information for the multicomponents of the cellulase, Bscherichia coli K12 and plasmid DNA pBR322 was used as host-vector system. After the digestion of purified chromosomal DNA and plasmid DNA pBR322 with HindIII, these were ligated. The ligated DND were transformed into Escherichia coli, and recombinant plasmid 107 carried the gene coding for CMCase was constructed. The CMCase produced by Escherichia coli cells containing plasmid DNA pYBC107 was found in the cells as intracellular enzyme and nearly 60% of the total CMCase activity was localized in cellular fraction. Also, the optimum pH for the reaction of CMCase produced by Escherichia coli was appeared at pH .8.0 and the enzyme was stable between pH 7.0 and pH 8.0.

  • PDF

A Macrolide-Lincosamide-Streptogramin B Resistance Determinant Gene (ermJ) Cloned from B, anthracis 590

  • Kim, Hee-Sun;Choi, Eung-Chil;Kim, Byong-Kak;Park, Young-In
    • Archives of Pharmacal Research
    • /
    • v.15 no.1
    • /
    • pp.58-61
    • /
    • 1992
  • Bacillus anthracis 590 having an inducibla resistance determinant to MLS antibiotics was isolated from a soli sample in Korea. The resistance gene (ernJ) was cloned by Southern blotting of chromosomal DNA fragment digested by various restriction enzymes and coloy hybridization method and the cloned plasmid was named as pBA423. The size of inserted DNA fragment of pBS42 vector was about 2.9 kb and the DNA sequence of the subcloned fragment (Hinc II-Hinc II, 1.4kb) WAS determined. The DNA sequence of ernJ was composed of 357 bp for leader region and 861 bp for the structural gene. Because the leader sequence of ernJ was homologous to that of ermK, the expression of ernJ is also thought to be controlled by a transcriptionl attenuation mechanism.

  • PDF

Mutagenicity and Hepato-Toxicity of Kyoaesamultang (교애사물탕의 변이원성 및 간독성에 관한 연구)

  • 우덕안;홍희탁;문진영;이태균;김철호;김준기;최미정;남경수
    • Toxicological Research
    • /
    • v.13 no.3
    • /
    • pp.197-202
    • /
    • 1997
  • Kyoaesamultang(KAT) has been used as an important prescription for various diseases including threatened abortion, associated with pregnancy in traditional medicine. In oder to identify the safety of KAT, this study was designed to determine mutagenicity and hepato-toxicity. In Rec-assay, Bacillus subtills H-17($Rec{^+}$) and M-45($Rec{^-}$) strains were used to clarify the DNA damage property. In Ames test, Salmonella typhimurium TA98 and TA100 were used for mutagenicity testing. In SOS umu test, Salmonella typhimurium TA1535 containing plasmid pSK1002 was used as a tester strain, and the levels of umu operon expression were monitored by measuring the $\beta$-galactosidase activity. From tested results, KAT did not show DNA damage and mutagenicity. On the other hand, hepato-toxicity of KAT to female ICR mice was monitored by the measurements of s-GOT, s-GPT and LDH activities after oral feeding for 15days. KAT showed 34% increase of s-GOT and s-GPT activities, also exhibited 35% increase of LDH activity in mice sera.

  • PDF