• Title/Summary/Keyword: Bacillus K-12

Search Result 628, Processing Time 0.029 seconds

Production of Vitamin $B_{12}$ by Using Protoplast Fusion between Bacillus natto and Bacillus megaterium (Bacillus natto 및 Bacillus megaterium의 원형질체 융합에 의한 Vitamin $B_{12}$의 생산)

  • Jin, Sung-Hyun;Park, Bub-Gyu;Roh, Myung-Hoon;Kim, Dong-Gyu;Ryu, Beung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.611-617
    • /
    • 1990
  • This study was conducted to breed a high vitamin $B_{12}$ producer by the fusion of protoplasts between Bacillus natto and Bacillus megaterium. Auxotrophic mutants of Bacillus natto SH-34 ($thr^-try^-rif^r$) and Bacillus megaterium BK-13 ($arg^-ade^-lys^-str^r$) which showed high protease activity and production of vitamin $B_{12}$, respectively, were isolated for the fusion experiment. Protoplasts were induced by incubating the cells with lysis solution containing $500{\mu}/ml$ lysozyme, and the ratio of protoplast and regeneration formation were ranged from 99% and 67%, respectively. Fusion frequencies of fusants between Bacillus natto SH-34 and Bacillus megaterium BK-13 were appeared in the ranges of $1.0{\times}10^{-5}$ under the treatment of 30% PEG 6000 containing 3% PVP. The fusant, MNF-72 showed the highest product yield of $7.85{\mu}g/g-cell\;vitamin\;B_{12}$ in production medium. For the improvement of productivity, the immobilization of fusants with sodium alginate was carried out. In batch and continuous fermentation systems, the productivity were determined to be $0.58{\mu}g/ml.hr\;and\;0.80{\mu}g/ml.hr\;vitamin\;B_{12}$ under optimum condition, respectivity.

  • PDF

Isolation and characterization of Bacillus subtilis NO12 from button mushroom substrates (양송이 배지로부터 분리된 Bacillus subtilis NO12의 특성)

  • Kim, Hye Soo;Park, Hyun Young;Lee, Chan-Jung;Kong, Won-Sik;Cho, Soo Jeong
    • Journal of Mushroom
    • /
    • v.15 no.4
    • /
    • pp.249-253
    • /
    • 2017
  • Twelve strains of bacteria with cellulase and xylanase activities were isolated from spent mushroom substrates collected from button mushroom cultivation farm, Buye, Chungcheongnam-do in Korea. Among them, one strain, designated NO12, with higher cellulase and xylanase activities was selected by agar diffusion method. The strain NO12 was identified to be a Bacillus sp. by biochemical characteristics using Bacillus ID kit and MicroLog system. Comparative 16S rDNA gene sequence analysis showed that strain NO12 formed a distinct phylogenetic tree within the genus Bacillus and was most closely related to Bacillus subtilis with 16S rDNA gene sequence similarity of 99.2%. Based on its physiological properties, biochemical characteristics, and phylogenetic distinctiveness, strain NO12 was classified within the genus Bacillus, for which the name Bacillus subtilis NO12 was proposed. The cellulase and xylanase activities of B. subtilis NO12 were slightly increased according to bacterial population from exponential phase to stationary phase in the growth curve for B. subtilis NO12. The xylanase activity continuously increased from the beginning of the exponential phase and exhibited maximum activity in the middle of the exponential phase.

Effects of Bacillus and Endospore Germinations on Organic Matter Removal (Bacillus와 내생포자 발아가 유기물 제거에 미치는 효과)

  • Nam, Ji-Hyun;Bae, Woo-Keun;Lee, Dong-Hun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.2
    • /
    • pp.169-175
    • /
    • 2007
  • The Bio Best Bacillus(B3) and Rotating Activated Bacillus Contactor(RABC) processes, in which Bacillus strains are predominating, are reported to remove nitrogen and phosphorus as well as organic matter effectively. Nevertheless the nutrient removal characteristics of the Bacillus strains have not been studied in detail so far. This study investigated the organic and nutrient removal by Bacillus strains, Bacillus megaterium(KCTC 3007), Paenibacillus polymyxa(KCTC 3627), and Bacillus sp. A12, C21, F12, and L1(isolated from a B3 process), by incubating the strains in 0.2% nutrient broth at $30^{\circ}C$. Burkholderia cepacia(KCTC 2966), a common activated sludge organism, was used as a reference species for comparison. Although the degradation rate was affected by the population sire, the specific removal rates of organic matter by Bacillus strains were greater by $2\sim5$ times than that of Burkholderia. In particular, the culture bottles inoculated with the endospores of Bacillus megaterium and Bacillus sp. C21, F12, and N12 showed significantly higher degradation rate than those of vegetative cells.

Fibrinolytic Activity and Characterization of Bacillus licheniformis HK-12 Isolated from Chungkook-Jang (청국장에서 분리한 세균인 Bacillus licheniformis HK-12의 혈전용해활성 및 특징)

  • Sohn, Byung-Hee;Song, Yu-Jin;Oh, Kye-Heon
    • KSBB Journal
    • /
    • v.23 no.3
    • /
    • pp.251-256
    • /
    • 2008
  • The aim of this work was to investigate the fibrinolytic activity and characterization of Bacillus licheniformis HK-12, which produces the fibrinolytic enzyme excreted from naturally fermented Chungkook-Jang. Initially, the physiological and biochemical characteristics of strain HK-12 was examined. Both physiological analysis using BIOLOG system and phylogenetic analysis using 16S rRNA sequencing were performed to identify the strain, and the strain could be assigned to Bacillus licheniformis, designated as B. lichenformis HK-12, and registered in GenBank as [EU288193]. Phylogenetic analysis of B. licheniformis HK-12 was plotted based on 16S rRNA sequence comparisons. During the incubation period of B. licheniformis HK-12, the changes of bacterial growth, fibrinolytic activity, and pH were monitored. As the results, after 36 hours of incubation, the maximum fibinolytic activity was about 2.25 times than that of plasmin used as standard. Optimal conditions on the growth of B. licheniformis HK-12 associated with the fibrinolytic activity was initial pH 7.0 and 40$^{\circ}C$, respectively.

Antimicrobial Activity of Grapefruit Seed Extract (자몽 종자 추출물의 항균성)

  • Park, Heon-Kuk;Kim, Sang-Bum
    • The Korean Journal of Food And Nutrition
    • /
    • v.19 no.4
    • /
    • pp.526-531
    • /
    • 2006
  • Minimum inhibition concentration(MIC), growth inhibition activity, and colony forming inhibitory activity of grapefruit seed extract against Bacillus cereus, Bacillus subtilis, Listeria monocytogenes, Escherichia coli, Salmonella enterifidis and Serratia marcescens were tested. MIC of grapefruit seed extract against Bacillus cereus, Bacillus subtilis, Listeria monocytogenes, Escherichia coli, Salmonella enteritidis and Serratia marcescens was 12.5, 12.5, 12.5, 50, 50, 100ppm, respectively. Growth inhibition concentration of grapefruit seed extract against Bacillus cereus, Bacillus subtilis, Listeria monocytogenes, Escherichia coli, Salmonella enteritidis and Serratia marcescens was below 1.0, 6.25, below 1.0, 6.25, 25, 25ppm, respectively. Colony forming inhibitory activity of grapefruit seed extract against Bacillus cereus, Bacillus subtilis, Listeria monocytogenes, Escherichia coli, Salmonella enteritidis and Serratia marcescens was 93.9, 94.0, 99.9, 4.4, 82.7, 86.4%, respectively. Colony forming inhibitory activities of grapefruit seed extract against Gram positive bacteria were higher than that against Gram negative bacteria.

Bacillus cellulyticus K-12 Crystalline Cellulose-Degrading Avicelase Gene and Expression in Eschterichia coli

  • Cheorl-Ho Kim;Woo
    • The Korean Journal of Food And Nutrition
    • /
    • v.6 no.4
    • /
    • pp.314-321
    • /
    • 1993
  • We have cloned the Bacillus cellulyticus K-12 avicelase (Avi, E.C.3.2.1.4) gene (ace A) In E. coli. This was accompanied by using the vector PT7T3U 19 and Hind W -Hind m libraries of Bacillus cellulyticus K-12 chromosomal inserts created in 5.cofi. The Libraries were screened for the expression of avicelase by monitoring the immunoreaction of the anti-avicelase (immunoscreening). Positive clones (Ac-3, Ac-5, and Ac-7) contained the identical 3.5kb Hind III fragment as determined by restriction mapping and Southern hybridization, and expressed avicelase efficiently and constituvely using its own promoter in the heterologous host. From the immunoblotting analysis, a polypeptide which showed a CMCase activity with an Mr of 54000 was detected.

  • PDF

Isolation and Immunomodulating Activity of an Extracellular Polysaccharide Produced by Bacillus sp. PS-12 (Bacillus sp. PS-12가 생산하는 extracellular polysaccharide의 분리 및 immunomodulating activity)

  • Na, Ye-Seul;Suh, Hyun-Hyo
    • Journal of Life Science
    • /
    • v.19 no.6
    • /
    • pp.744-750
    • /
    • 2009
  • A bacterial strain producing highly viscous extracellular polysaccharide was isolated from soil. Through morphological, physiological and chemotaxonomical studies, it was identified as a Bacillus sp. and named Bacillus sp. PS-12. The extracellular polysaccharide, named PS-12 was purified by ethanol precipitation, cetylpyridinium chloride (CPC) precipitation and gel permeation chromatography. The purified polysaccharide was found to consist of glucose, mannose, galactose, and fucose, with a molar ratio of approximately 7:3.2:2:1, respectively. PS-12 was investigated for its immunostimulating activity on murine macrophage RAW264.7 cells using an ELISA assay. PS-12 stimulated the production of TNF-${\alpha}$ to a level 50 times greater than the control and also induced 1L-6 secretion in a dose-dependent manner. The cytotoxicity on RAW264.7 cells by PS-12 was relatively low with 10% cytotoxicity at 2 ${\mu}g$/ml. These results indicate that PS-12 is less cytotoxic to immune cells and possess immunomodulating activity in which it can produce cytokines including TNF-${\alpha}$ and 1L-6 from macrophages.

Cloning and Expression of A Bacillus licheniformis Cellulase Gene (Bacillus licheniformis WL-12의 cellulase 유전자 클로닝과 발현)

  • Yoon, Ki-Hong
    • Korean Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.313-318
    • /
    • 2006
  • A thermophilic bacterium producing the extracellular cellulase was isolated from soybean paste, and the isolate WL-12 has been identified as Bacillus licheniformis on the basis on its 16S rRNA sequence, morphology and biochemical properties. A gene encoding the cellulase of B. licheniformis WL-12 was cloned and its nucleotide sequence was determined. This cellulase gene, designated celA, consisted of 1,551 nucleotides, encoding a polypeptide of 517 amino acid residues. The gene product contained catalytic domain and cellulose binding domain. The deduced amino acid sequence was highly homologous to those of cellulases of B. licheniformis, B. subtilis and B. amytoliquefaciens belonging to the glycosyl hydrolase family 5. When the celA gene was highly expressed using a strong B. subtilis promoter, the extracellular cellulase was produced up to 7.0 units/ml in B. subtilis WB700.

Biosorption of uranium by Bacillus sp.FB12 isolated from the vicinity of a power plant

  • Xu, Xiaoping;He, Shengbin;Wang, Zhenshou;Zhou, Yang;Lan, Jing
    • Advances in environmental research
    • /
    • v.2 no.3
    • /
    • pp.245-260
    • /
    • 2013
  • Biosorption represents a technological innovation as well as a cost effective excellent remediation technology for cleaning up radionuclides from aqueous environment. In the present study, a bacteria strain FB12 with high adsorption rate of uranium ion was isolated from the vicinity of the nuclear power plant. It was tentatively identified as Bacillus sp.FB12 according to the 16S rDNA sequencing. Efforts were made to further improve the adsorption rate and genetic stability by UV irradiation and UV-LiCl cooperative mutagenesis. The improved strain named Bacillus sp.UV32 obtains excellent genetic stability and a high adsorption rate of 95.9%. The adsorption of uranium U (VI) by Bacillus sp.UV32 from aqueous solution was examined as a function of metal ion concentration, cell concentration, adsorption time, pH, temperature, and the presence of some foreign ions. The adsorption process of U (VI) was found to follow the pseudo-second-order kinetic equation. The adsorption isotherm study indicated that it preferably followed the Langmuir adsorption isotherm. The thermodynamic parameters values calculated clearly indicated that the adsorption process was feasible, spontaneous and endothermic in nature. These properties show that Bacillus sp.UV32 has potential application in the removal of uranium (VI) from the radioactive wastewater.

A Study on the Odor Removal Characteristics of sewage sludge using Bacillus sp. (바실러스균을 이용한 하수 슬러지의 악취 제거 특성에 대한 연구)

  • Sung, Il-Wha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.1-8
    • /
    • 2016
  • This study assessed the feasibility of odor removal by the application of Bacillus sp. that has many advantages in sewage treatment to sewage sludge. The NH3 removal rates in the treatment of primary sludge using only aeration were measured at 24, 48, and 72 hours of treatment and the results were 12.5 %, 12 %, and 42.1 %, respectively. The NH3 removal rates of a reactor injected with BIO-CLOD made by solidifying Bacillus sp. concentrated 10 % together with other substances were measured after 24, 48, and 72 hours of treatment and the results were 43 %, 70 %, and 81 % respectively. In the cases where the Bacillus sp. cultured in NB medium was injected into the primary sludge reactor to reach injection rates of 0 %, 1.7 %, 3.3 %, and 6.7(v/v%), the TVOC removal rates measured when 72 hours had passed after the injection were 59 %, 71 %, 88 %, and 98 % respectively, which were higher than the NH3 removal rates as the NH3 removal rates measured at the same time were shown to be 29 %, 25 %, 31 %, and 48 %, respectively. In the sludge dewaterability conducted with various Bacillus sp. injection concentrations, a Bacillus sp. concentration of 4(v/v%) was considered to be suitable. The Bacillus sp. concentrations and reduction in the bad odor substances were correlated with each other. The results showed that aeration and Bacillus sp. injection will assist biological oxidation so that the bad odor substances can be removed. Based on the SRF values of the primary sludge and digested sludge, in which Alum and PAC were used, the appropriate amount of Alum aggregate reagent was judged to be 500 mg/L, and when PAC was used, 6 mg/L was judged to be appropriate.