• Title/Summary/Keyword: Ba excess addition

Search Result 18, Processing Time 0.018 seconds

Synthesis and Luminescent Characteristics of BaGa2S4:Eu2+ Green Phosphor for Light Emitting Diode (LED용 BaGa2S4:Eu2+ 녹색 형광체의 합성 및 발광특성)

  • Kim, Jae-Myung;Park, Joung-Kyu;Kim, Kyung-Nam;Lee, Seung-Jae;Kim, Chang-Hae
    • Korean Journal of Materials Research
    • /
    • v.16 no.12
    • /
    • pp.761-765
    • /
    • 2006
  • [ $II-III_2-(S,Se)_4$ ] structured of phosphor has been used at various field because those have high luminescent efficiency and broad emission band. Among these phosphors, the europium doped $BaGa_2S_4$ was prepared by solid-state method and had high potential application due to an emissive property of UV region. Also, the common sulfide phosphors were synthesized by using injurious $H_2S\;or\;CS_2$ gas. However, in this study $BaGa_2S_4:Eu^{2+}$ phosphor in addition to excess sulfur was prepared under at 5% $H_2/95%\;N_2$ reduction atmosphere. Thus, this process could be considered as large scale synthesis because of non-harmfulness and simplification. The photoluminescence efficiency of the prepared $BaGa_2S_4:Eu^{2+}$ phosphor increased 20% than that of commercial $SrGa_2S_4:Eu^{2+}$ phosphor. The prepared $BaGa_2S_4:Eu^{2+}$ could be applied to green phosphor for white LED of three wavelengths.

Fabrication of Mono-Dispersed Ultrafine BaTiO$_3$ Powder Using Microwave (마이크로파를 이용한 초미세 균일 분산 BaTiO$_3$ 분말 제조)

  • 김현상;최광진;이상균;김영대;심상준;우경자;김경림;조영상
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.4
    • /
    • pp.343-353
    • /
    • 1999
  • Microwave(2.45 GHz) was used as energy source in hydrothermal reaction to fabricate ultrafine BaTiO3 powder. Using microwave of 700 W, crytal BaTiO3 began to fom after 5 min in microwave-autoclave sys-tem. The crystallinity was not noticeably increased with increasing longer reaction time than 10 min. On the other hand in microwave-reflux system crytal BaTiO3 began to form after 15min and the crystallinity was not noticeably increased with increasing longer reaction time than 1hr,. In either case particle size dis-tribution was considerably uniform due to the effect of homogeneous heating by microwave. In addition mi-crowave heating gave an extremely small degree of particle agglomeration compared to electric heating. Av-erage sizes of as-synthesized powders were 30-60nm. Ba/Ti ratio in sol played an important role in det-ermining the particle size. It seems that excess barium forms different phases such as Ba(OH)2 which makes thin layer on the surface of BaTiO3 powder. This thin layer would inhibit the agglomeration of Ba-TiO3 powders and keep the small grain size. In microwave-autoclave system tetragonal-BaTiO3 was formed directly by the reaction of only 15 min. In the case of microwave-reflux system tetragonal-BaTiO3 was formed by driyng over 25$0^{\circ}C$.

  • PDF

Microstructure and dielectric properties in the La2O3-doped BaTiO3 system (La2O3 첨가에 따른 BaTiO3의 미세구조 및 유전특성)

  • Choi, Woo-Jin;Moon, Kyoung-Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.3
    • /
    • pp.103-109
    • /
    • 2020
  • The effect of La2O3 addition on the crystalline phase, microstructure, and dielectric properties of BaTiO3 has been studied as a function of the amounts of La2O3. 0.3 mol% TiO2-excess BaTiO3 powder was synthesized by solid-state reaction, and then the powder compacts with various amounts of La2O3 were sintered at 1250℃ for 2 hours. Room temperature XRD showed changes in the lattice parameters and a decrease of tetragonality (c/a) as the amounts of La2O3 increased. It can be explained that the phase transition from tetragonal to cubic phase occurred because La3+ replaced Ba2+ site, which increased the instability of the tetragonal phase. As La2O3 was added over 0.1 mol%, the critical driving force for growth (Δgc) increased over maximum driving force (Δgmax). As the result, the grain size decreased with La2O3 addition. Dielectric constant decreased as the amounts of La2O3 increased, which was analyzed with crystal structure and microstructure.

Effects of Sintering Atmosphere on Piezoelectric Properties of 0.75BF-0.25BT Ceramic

  • Kim, Dae Su;Kim, Jeong Seog;Cheon, Chae Il
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.162-166
    • /
    • 2016
  • 0.75BF-0.25BT ceramics were prepared by sintering at $980-1040^{\circ}C$ in air or under atmosphere powder. A sample with 1 mole %-excess $Bi_2O_3$ was also prepared to compensate for $Bi_2O_3$-evaporation. Physical and piezoelectric properties of these three samples were compared. When the sintering temperature increased from $980^{\circ}C$ to $1040^{\circ}C$, the density of the sample sintered in air decreased continuously due to Bi-evaporation. Due to the suppression of Bi-evaporation, the sample sintered under atmosphere powder had a higher density at sintering temperatures above $1000^{\circ}C$ than did the sample sintered in air. The addition of 1 mole %-excess $Bi_2O_3$ successfully compensated for Bi-evaporation and kept the density at the higher value until $1020^{\circ}C$. Grain size increased continuously when the sintering temperature increased from 980 to $1040^{\circ}C$, irrespective of the sintering atmosphere. When the sintering temperature increased, the piezoelectric constant ($d_{33}$) and the electromechanical coupling factor ($k_p$) increased for all samples. The sample with 1 mole % excess-$Bi_2O_3$ showed the highest density and the best piezoelectric properties at sintering temperature of $1020^{\circ}C$.

Catalytic Combustion of Methane over Perovskite-Type Oxides

  • Hong, Seong-Soo;Sun, Chang-Bong;Lee, Gun-Dae;Ju, Chang-Sik;Lee, Min-Gyu
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.2
    • /
    • pp.95-102
    • /
    • 2000
  • Methane combustion over perovskite-type oxides prepared using the malic acid method was investigated. To enhance the catalytic activity, the perovskite oxides were modified by the substitution of metal into their A or B site. In addition, the reaction conditions, such as the temperature, space velocity, and partial pressure of the methane were varied to understand their effect on the catalytic performance. With the LaCoO3-type catalyst, the partial substitution of Sr or Ba into site A enhanced the catalytic activity in the methane combustion. With the LaBO3(B=Co, Fe, Mn, Cu)-type catalyst, the catalytic activities were exhibited in the order of Co>Fe Mn>Cu. Futhermore, the partial substitution of Co into site B enhanced the catalytic activity, whereas an excess amount of Co decreased the activity. The surface area and catalytic activity of the perovskite catalysts prepared using the malic acid method showed higher values than those prepared using the solid reaction method. The catalytic activity was enhanced with decreased methane concentration and with a decrease in the space velocity.

  • PDF

A Stud on the Catalytic Removal of Nitric Oxide (질소산화물의 촉매반응에 의한 저감기술에 관한 연구)

  • 홍성수;박종원;정덕영;박대원;조경목;오광중
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.1
    • /
    • pp.25-33
    • /
    • 1998
  • We have studied the reduction of NO by propane over perovskite-type oxides prepared by malic acid method. The catalysts were modified to enhance the activity by substitution by substitution of metal into A or B site of perovskite oxides. In addition, the reaction conditions, such as temperature, $O_2$ concentration, space velocity have been studed. In the $LaCoO_3$ type catalyst, the partial substitution of Ba, Sr into A site enhanced the catalytic activity in the reduction of NO. In the $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3(x=0 \sim 1.9)$ catalyst, the partial substitution of Fe into B site enhanced the conversion of NO, but excess amount of Fe decreased the conversion of NO. The surface area and catalytic activity of perovskite catalysts prepared by malic acid method showed higher values than those of solid reaction method. In the $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3$ catalyst, the conversion of NO increased with increasing $O_2$ concentration and contact time. The introduction of water into reactant feed decreased the catalytic activity.

  • PDF

Mineralogy and Chemical Composition of the Residual Soils (Hwangto) from South Korea (우리 나라 황토(풍화토)의 구성광물 및 화학성분)

  • 황진연;장명익;김준식;조원모;안병석;강수원
    • Journal of the Mineralogical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.147-163
    • /
    • 2000
  • The mineralogy and chemical composition of reddish to brownish yellow residual soils, so called "Hwangto" have been examined according to representative host rocks. The result of the study indicates that Hwangto consists of 40-80% clay minerals and various minerals such as quartz, feldspar, hornblende, goethite, and gibbsite. Clay minerals include kaolinite, halloysite, illite, hydroxy interlayered vermiculite (HIV), mica/vermiculite interstratifield mineral and chlorite. The mineralogical constituents and contents of Hwangto were different depending on the types of host rocks. Moreover, the Jurassic granitic rocks contain relatively more kaolin minerals, whereas the Cretaceous granitic rocks contain more HIV and illite. In addition, reddish Hwangto contains relatively more kaolinite and HIV, and yellowish Hwangto contains more illite and halloysite. It is suggested that feldspars and micas of host rocks were chemically weathered into illite, halloysite, illite/vermiculite interstratified minerals, and HIV, and finally into kaolinite. Compared with their host rocks, the major chemical compositions of Hwangto tend to contain more $Al_2O_3,\;Fe_2O_3,\;H_2O$ in amount and less Ca, Mg, and Na. Hwangto contains relatively high amount of trace elements, P, S, Zr, Sr, Ba, Rb, and Ce including considerable amount of Li, V, Cr, Zn, Co, Ni, Cu, Y, Nb, La, Nd, Pb, Th in excess of 10 ppm. Relatively high amount of most trace elements were detected in the Hwangto. The major and minor chemical compositions of the Hwangto were different depending on the types of host rocks. However, their difference was in the similar range compared with the compositions of host rocks.

  • PDF

Catalytic Reduction of Nitric Oxide by Carbon Monoxide over Perovskite-Type Oxide (페롭스카이트형 산화물에서 일산화탄소에 의한 질소산화물의 환원반응)

  • Moon, Haeng-Chul;Sun, Chang-Bong;Lee, Gun-Dae;Ahn, Byuong-Hyun;Lim, Kwon-Taek;Hong, Seong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.407-414
    • /
    • 1999
  • We have studied the reduction of NO by CO over perovskite-type oxides prepared by malic and method. The catalysts were modified to enhance the activity by substitution of metal into A or B site of perovskite oxides. In the $LaCoO_3$ type catalyst, the partial substitution of Sr into A site enhanced the catalytic activity on the conversion of NO at less than $350^{\circ}C$. In the $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3$ catalyst, the partial substitution of Fe or Mn into B site enhanced the conversion of NO, but excess amount of Fe decreased the conversion of NO. In addition, $La_{0.6}Sr_{0.4}Co_{0.8}Fe_{0.2}O_3$ mixed with $SnO_2$ or $MnO_2$ showed the synergy effect on the reduction of NO. The introduction of water into reactants feed decreased the catalytic activity but the deactivation was shown to be reversible. The introduction of $SO_2$ into reactants feed also decreased the catalytic activity.

  • PDF