• Title/Summary/Keyword: Ba + $C_6H_5Br$ reaction

Search Result 2, Processing Time 0.017 seconds

Quasi-classical Trajectory Calculation of the Chemical Reactions Ba+C6H5Br, m-C6H4CH3Br

  • Xia, Wenwen;Liu, Yonglu;Zhong, Haiyang;Yao, Li
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.589-596
    • /
    • 2012
  • In this paper, the reactive dynamics properties of the reactions Ba + $C_6H_5Br$ and Ba + m-$C_6H_4CH_3Br$ were studied by means of the quasi-classical trajectory method based on the London-Eyring-Polanyi-Sato potential energy surfaces. The vibrational distributions, reaction cross sections, rotational alignments of the products BaBr all were obtained. The peak values of the vibrational distributions are located at $\nu$ = 0 for the reactions Ba + $C_6H_5Br$ and Ba + m-$C_6H_4CH_3Br$ when the collision energies are 1.09 and 1.10 eV, respectively. The reaction cross sections increase with the increasing collision energy, which changes from 0.6 to 1.5 eV. The product rotational alignments deviate from -0.5 and firstly increase and then decrease while the collision energy is increasing, just like that of Heavy+Light-Light system.

Quantification of sulfur from organic and inorganic materials for determination of 35C (35C 측정을 위한 유기물과 무기물에서 황의 정량)

  • Lee, H.N.;Kang, S.H.;Song, B.C.;Sohn, S.C.;Jee, K.Y.
    • Analytical Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.186-190
    • /
    • 2009
  • The oxidation studies of a sulfur to a sulfate ion by various oxyhalide oxidants in organic (thiourea, methionine) and inorganic (sulfate, thiophosphate) compounds were carried out in an acidic solution. The optimized result of the oxidation reaction was obtained when a bromate compound (${BrO_3}^-$) as an oxidant and a 3 M $HNO_3$ solvent were used. The chemical yield for the oxidation of the organic and inorganic sulfur compounds to a sulfate ion was monitored as 80% for thiophosphate, 87% for methionine, and 100% for thiourea and sulfate within 5% RSD. The oxidations of thiourea required at least 1.6 equivalents of the bromate in an acidic solution. In the case of the oxidation of methionine and thiophosphate, the oxidation yields were above 80% if the bromate was used at 20 times higher than that of the substrates. The sulfate ion was quantitatively measured by using a GPC counting of $^{35}S$ followed by precipitates of $BaSO_4$. A quenching correction curve for the $^{35}S$ counting was obtained to use the difference via the precipitate weight result.