• Title/Summary/Keyword: BTX(benzene, toluene, xylene)

Search Result 39, Processing Time 0.023 seconds

Effects of Electron Acceptors and Acclimation on the Anaerobic Degradation of Benzene, Toluene, and meta-Xylene (Benzene, Toluene, meta-Xylene의 혐기성 분해에 미치는 전자수용체와 시료 적응의 영향)

  • Yoon, In-Kil;Kwon, O-Seob;Kim, Sang-Jin
    • Korean Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.96-100
    • /
    • 1998
  • The effects of electron acceptors and acclimation of inoculum on the anaerobic degradation of benzene, toluene, and m-xylene (BTX) were investigated to enhance the rate of degradation by estuarine sediment inoculum. With the fresh sediment inocula, degradation of BTX ensued after a 10-week acclimation period, and 37~61% of benzene and 57~61% of toluene were degraded after 16 weeks. Sediments from heavily contaminated sites showed higher degradation rates of BTX. After a 6-month of acclimation, degradation onset rapidly from the time of BTX addition and no difference was found among the sediment inocula. Single compound of BTX was slowly degraded in the methanogenic conditions, however, the degradation of BTX mixture was slow in the denitrifying conditions. Although the degradation rate of m-xylene was the fastest among the components of BTX mixture, longer acclimation enhanced the degradation rate of BTX, especially that of benzene. When the culture fluids were tested with Microtox, anaerobic degradation of BTX reduced the toxicity of BTX as well.

  • PDF

Degradation of BTX by Klebsiella gr. 47 in the Biological Wastewater Treatment (Klebsiella gr. 47을 이용한 생물학적 폐수처리에서 BTX 분해 특성)

  • 염승호;최석순
    • Journal of Environmental Science International
    • /
    • v.7 no.3
    • /
    • pp.393-400
    • /
    • 1998
  • A microorganism, Klebsiella gr. 47, capable of degrading BTX(benzene, toluene and xylene) was isolated from oil-contaminated soil and its characteristics of BTX degradation were investigated. When benzene and toluene were fed to Klebstella gr. 47 simulataneously, they showed competitive ingibition. The degradation rate of xylene was enhanced as much as 3 times when xylene was fed with benzene or toluene. Degradation rate of benzene and toluene was also enhanced by cocultured with Alcaligenes xylosoxidans. When benzene-adapted microorganism was used, each BTX compound was degraded efficiently within 5 hours.

  • PDF

Degradation of BTX by Aerobic Microbial Consortium (호기성 미생물 컨소시엄에 의한 BTX의 분해)

  • 문종혜;김종우;박진수;오광중;김동욱
    • KSBB Journal
    • /
    • v.16 no.1
    • /
    • pp.61-65
    • /
    • 2001
  • In this study, a BTX degrading microbial consortium was obtained from the activated sludges of a BTX releasing sewage water and city sewage water treatment plant. The MY microbial consortium was developed for benzene and toluene degradation, whereas the MA microbial consortium was developed for xylene isomers. The major microorganism of the MA consortium was identified as Rhodococcus ruber DSM 43338T, whereas that of the MY consortium was Rhodococcus sp. In terms of the degradation of a single component, the removal rate of benzene was fastest and decreased in order; toluene, o-xylene, p-xylene and m-xylene. For degradation of mixed BTX, most BTX were degraded within 108 hours and the degradation rate showed either stimulatory or inhibitory effects depending on the composition. MA and MY microbial consortium obtained in this study may be used effectively to remove BTX biologically.

  • PDF

Change of Sludge Consortium in Response to Sequential Adaptation to Benzene, Toluene, and o-Xylene

  • Park, Jae-Yeon;Sang, Byoung-In
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1772-1781
    • /
    • 2007
  • Activated sludge was sequentially adapted to benzene, toluene, and o-xylene (BTX) to study the effects on the change of microbial community. Sludge adapted to BTX separately degraded each by various rates in the following order; toluene>o-xylene>benzene. Degradation rates were increased after exposure to repeated spikes of substrates. Eleven different kinds of sludge were prepared by the combination of BTX sequential adaptations. Clustering analyses (Jaccard, Dice, Pearson, and cosine product coefficient and dimensional analysis of MDS and PCA for DGGE patterns) revealed that acclimated sludge had different features from nonacclimated sludge and could be grouped together according to their prior treatment. Benzene- and xylene-adapted sludge communities showed similar profiles. The sludge profile was affected from the point of the final adaptation substrate regardless of the adaptation sequence followed. In the sludge adapted to 50 ppm toluene, Nitrosomonas sp. and bacterium were dominant, but these bands were not dominant in benzene and benzene after toluene adaptations. Instead, Flexibacter sp. was dominant in these cultures. Dechloromonas sp. was dominant in the culture adapted to 50 ppm benzene. Thauera sp. was the main band in the sludge adapted to 50 ppm xylene, but became vaguer as the xylene concentration was increased. Rather, Flexibacter sp. dominated in the sludge adapted to 100 ppm xylene, although not in the culture adapted to 250 ppm xylene. Two bacterial species dominated in the sludge adapted to 250 ppm xylene, and they also existed in the sludge adapted to 250 ppm xylene after toluene and benzene.

Performance of a Hellow Fiber Membrane Diffuser for the Biological Removal of Gaseous BTX (Diffuer 형태의 중공사막 생물반응기를 이용한 기체상 BTX 제거)

  • Son, Young-Gyu;Khim, Jee-Hyeong;Song, Ji-Hyeon
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.4
    • /
    • pp.25-32
    • /
    • 2006
  • In this study, a novel bioreactor system using a diffuser type hollow fiber membranes (hollow fiber membrane diffuser, HFMD) was applied to investigate the feasibility and biodegradation capacity for the treatment of a gaseous mixture consisting of benzene, toluene and p-xylene(BTX). First, A mixed culture pre-acclimated to toluene effectively biodegraded the BTX mixture at an overall removal efficiency of approximately 70% for a 20-day operational period. It was found that the biodegradation of toluene was slightly inhibited because of the presence of benzene and p-xylene. Second, the elimination capacity (EC) of total BTX increased up to 360 $g/m^3/hr$, which was substantially higher than maximum ECs for BTEX reported in the biofiltration literature. Consequently, the hollow fiber membrane diffuser was considered as an alternative method over other conventional VOC-treating technologies such as biofilters.

Cometabolism in the Biodegradation of Benzene, Toluene, and ${\rho}-xylene$ Mixture by Isolated Pseudomonas fluorescence BE103

  • Lim, Hye-Kyung;Lee, Jang-Young;Kim, Hak-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.63-67
    • /
    • 1994
  • A microorganism showing degradative activity towards benzene, toluene and ${\rho}-xylene$ (BTX) was isolated from an activated sewage sludge and was tentatively identified as Pseudomonas fluorescence BE103. This strain was found to utilize benzene and toluene as growth substrates, but to degrade ${\rho}-xylene$ in the obligate presence of a growth substrate. The metabolic product resulted from the cometabolism of ${\rho}-xylene$ was identified as 3, 6-dimethylpyrocatechol by LC/MS analysis, and the metabolic pathway was analyzed to be similar to the tod pathway. From the kinetic studies done regarding BTX biodegradation using Pseudomonas fluorescence BE103, it was revealed that the cometabolism of ${\rho}-xylene$ is significantly affected by the ratio of growth substrate concentration to biomass concentration, and that the cometabolism of ${\rho}-xylene$ initiates only when this ratio was about 0.03.

  • PDF

Formation of humus-bound residues in the course of BTX biodegradation in soil

  • Song, Hong-Gyu
    • Journal of Microbiology
    • /
    • v.35 no.1
    • /
    • pp.47-52
    • /
    • 1997
  • To examine whether the xylene component of BTX (benzene, toluene, xylene) mixture is cometabolized and residues are produced in soil, $\^$14/C-labeled-0-xylene was added to sandy loam in combination with unlabeled benzene and toluene. After 4 weeks of incubation in a sealed system connected to an oxygen reservoir, 55.1% of the radiocarbon was converted to $\^$14/CO$\sub$2/, 3.0% was to 95.8% radiocarbon recovery. Biomass incorporation of o-xylene radiocarbon which was detected by fumigation/extraction was usually low (5.6%), but 32.1% radiocarbon became associated with soil humus. Most of the numus-bound radiocarbon was found in humin fraction. In addition to o-xylene, p-xylene and toluene also showed similar results. The evidence shows that some of their reactive methylcatechol biodegradation intermediates attach to the humic metrix in soil in preference to mineralization and biomass incorporation.

  • PDF

Identification of Immune Responsive Genes on Benzene, Toluene and o-Xylene in Jurkat Cells Using 35 k Human Oligomicroarray

  • Sarma, Sailendra Nath;Kim, Youn-Jung;Jeon, Hee-Kyung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.4
    • /
    • pp.229-235
    • /
    • 2006
  • Volatile organic compounds (VOCs) are a major component of urban air pollution. It is documented that low exposure levels of VOCs induce alterations in immune reactivity resulting in a subsequent higher risk for the development of allergic reactivity and asthma. Despite these facts, there are few reports on the affected primary target and the underlying effective causal mechanisms. So in this study, to better understand the risk of BTX (benzene, toluene and o-xylene) which are the major VOCs and to identify novel biomarkers on immune response to these VOCs exposure in human T lymphocytes, we performed the toxicogenomic study by analyzing of gene expression profiles using 35 k human oligo-microarray. BTX generated specific gene expression patterns in Jurkat cell line. By clustering analysis, we identified some genes as potential markers on immuno-modulating effects of BTX. Four genes of these, HLA-DOA, ITGB2, HMGA2 and 5TAT4 were the most significantly affected by BTX exposure. Thus, this study suggests that these differentially expressed immune genes may play an important role in the pathogenesis on BTX exposure and have significant potential as novel biomarkers of exposure, susceptibility and response to BTC.

Measurements of Autoigniton Temperature(AIT) and Time Lag of BTX(Benzene, Toluene, Xylenes) (BTX(Benzene, Toluene, Xylenes)의 자연발화온도와 발화지연시간의 측정)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.3 s.75
    • /
    • pp.45-52
    • /
    • 2006
  • The AITs(autoignition temperatures) describe the minimum temperature to which a substance must be heated, without the application of a flame or spark, which will cause that substance to ignite. The AITs are often used as a factor in determining the upper temperature limit for processing operations and conditions for handling, storage and transportation, and in determining potential fire hazard from accidental contact with hot surfaces. The measurement AITs are dependent upon many factors, namely initial temperature, pressure, volume, fuel/air stoichiometry, catalyst material, concentration of vapor, time lag. Therefore, the AITs reported by different ignition conditions are sometimes significantly different. This study measured the AITs of benzene, toluene and xylene isomers from time lag using AS1M E659-78 apparatus. The experimental ignition delay times were a good agreement with the calculated ignition delay times by the proposed equations wtih a few A.A.D.(average absolute deviation). Also The experimental AITs of benzene, toluene, o-xylene, m-xylene and p-xylene were $583^{\circ}C,\;547^{\circ}C,\;480^{\circ}C,\;587^{\circ}C,\;and\;557^{\circ}C$, respectively.

Simulation of Benzene-Toluene-Xylene Plant (BTX제조공정의 모사연구)

  • 정해동
    • Journal of the Korea Society for Simulation
    • /
    • v.4 no.1
    • /
    • pp.121-130
    • /
    • 1995
  • This paper deals with modeling and simulation of an industrial benzene-toluene-xylene plant. Because the fractionation unit of benzene-toluene-xylene plant has a narrow range of boiling point and doesn't have any sidecut and side reboiler, we employed boiling point estimation method in the modeling and simulation of the plant. Soave-Redlich-Kwong equation was used in the computation of thermodynamical properties. We solved resulting nonlinear equations by using Newton-Raphson method which is known to show fast convergence. Results of simulation showed good agreement with actual plant operation data.

  • PDF