• Title/Summary/Keyword: BTP2

Search Result 22, Processing Time 0.025 seconds

Electrical and Optical Properties of Red Phosphorescent Top Emission OLEDs with Transparent Metal Cathodes (투명 금속 음극을 이용한 전면발광 적색 인광 OLEDs의 전기 및 광학적 특성)

  • Kim, So-Youn;Ha, Mi-Young;Moon, Dae-Gyu;Lee, Chan-Jae;Han, Jeong-In
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.9
    • /
    • pp.802-807
    • /
    • 2007
  • We have developed red phosphorescent top emission organic light-emitting diodes with transparent metal cathodes deposited by using thermal evaporation technique. Phosphorescent guest molecule, BtpIr(acac), was doped in host CBP for the red phosphorescent emission, Ca/Ag, Ba/Ag, and Mg/Ag double layers were used as cathode materials of top emission devices, which were composed of glass/Ni/2TNATA(15 nm)/${\alpha}$-NPD(35 nm)/CBP:BtpIr(acac)(40 nm, 10%)/BCP(5 nm)/$Alq_3$(5 nm)/cathodes. The optical transparencies of these metal cathodes strongly depend on underlying Ca, Ba, and Mg layers. These layers also strongly affect the electrical conduction and emission properties of the red phosphorescent top emission devices.

Salen-Aluminum Complexes as Host Materials for Red Phosphorescent Organic Light-Emitting Diodes

  • Bae, Hye-Jin;Hwang, Kyu-Young;Lee, Min-Hyung;Do, Young-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3290-3294
    • /
    • 2011
  • The properties of monomeric and dimeric salen-aluminum complexes, [salen(3,5-$^tBu)_2$Al(OR)], R = $OC_6H_4-p-C_6H_6$ (H1) and R = [salen(3,5-$^tBu$)AlOPh]C$(CH_3)_2$ (H2) (salen = N,N'-bis-(salicylidene)-ethylenediamine) as host layer materials in red phosphorescent organic light-emitting diodes (PhOLEDs) were investigated. H1 and H2 exhibit high thermal stability with decomposition temperature of 330 and $370^{\circ}C$. DSC analyses showed that the complexes form amorphous glasses upon cooling of melt samples with glass transition temperatures of 112 and $172^{\circ}C$. The HOMO (ca. -5.2~-5.3 eV) and LUMO (ca. -2.3~-2.4 eV) levels with a triplet energy of ca. 1.92 eV suggest that H1 and H2 are suitable for a host material for red emitters. The PhOLED devices based on H1 and H2 doped with a red emitter, $Ir(btp)_2$(acac) (btp = bis(2-(2'-benzothienyl)-pyridinato-N,$C^3$; acac = acetylacetonate) were fabricated by vacuum-deposition and solution process, respectively. The device based on vacuum-deposited H1 host displays high device performances in terms of brightness, luminous and quantum efficiencies comparable to those of the device based on a CBP (4,4'-bis(Ncarbazolyl) biphenyl) host while the solution-processed device with H2 host shows poor performance.

Comparison on Compressive Strength of Paraffin Waste Form with H/D Ratio and Loading Rate (붕산함유파라핀 고화체의 직경/높이 및 재하속도에 따른 압축강도비교)

  • 곽경길;유영걸
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.124-129
    • /
    • 2003
  • In case that the mixing weight ratio of waste form between boric acid and paraffin was 3.3/l, which had been adopted in the concentrate waste drying system (CWDS) of domestic nuclear power plants. Using several specimens with different diameters and heights, 50/100mm specimens. compressive strength were measured. The experiment result showed that the small diameter specimens of compressive strength are increased more than large diameter specimens. (d=50>75>100mm) The average compressive strength of specimens showed that the range from 22.43 $\kg/textrm{cm}^2$ to 38.57$\kg/textrm{cm}^2$ (NRC standard$\geq$4.1 $\kg/textrm{cm}^2$). NRC standard is recommended that the compressive strength test specimens be right circular cylinders, 2 to 3 inches in diameter, with a height-to-diameter(H/D) ratio of approximately two. and compressive strength were increased more than large loading rate. As test result, this conditions are a good agreement, and estimated.

  • PDF

Tuning Photophysical and Electrochemical Properties of Heteroleptic Cationic Iridium(III) Complexes Containing Substituted 2-Phenylquinoxaline and Biimidazole

  • Sengottuvelan, Nallathambi;Seo, Hoe-Joo;Kang, Sung-Kwon;Kim, Young-Inn
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2309-2314
    • /
    • 2010
  • Design and syntheses of four red phosphorescent heteroleptic cationic iridium(III) complexes containing two substituted phenylquinoxaline (pqx) or benzo[b]thiophen-2-yl-pyridin (btp) main ligands and one 2,2'-biimidazole (H2biim) ancillary ligand are reported: [$(pqx)_2$Ir(biim)]Cl (1), [$(dmpqx)_2$Ir(biim)]Cl (2), [$(dfpqx)_2$Ir(biim)]Cl (3), [$(btp)_2$Ir(biim)]Cl (4). Complex 1 showed a distorted octahedral geometry around the iridium(III) metal ion with cis metallated carbons and trans nitrogen atoms. The absorption, emission and electrochemical properties were systematically evaluated. The complexes exhibited red phosphorescence in the spectral range of 580 to 620 nm with high quantum efficiencies of 0.58 - 0.78 in both solution and solid-state at room temperature depending on the cyclometalated main ligands. The cyclic voltammetry of the complexes (1-3) showed a metal-centered irreversible oxidation in the range of 1.40 to 1.90 V as well as two quasi reversible reduction waves from -1.15 to -1.45 V attributed to the sequential addition of two electrons to the more electron accepting heterocyclic portion of two distinctive cyclometalated main ligands, whereas complex 4 showed a reversible oxidation potential at 1.24 V and irreversible reduction waves at -1.80 V.

Diffusion Length Measurement of the Triplet Exciton in PHOLEDs by using Double Quantum Well Structure

  • Park, Won-Hyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.225-225
    • /
    • 2016
  • PHOLED devices which have the structure of ITO/HAT-CN(5nm)/NPB(50nm)/EML(47nm)/TPBi(10nm)/Alq3(20nm)/LiF(0.8nm)/Al(100nm) are fabricated to investigate the diffusion length of the triplet exciton by using double-quantum-well(DQE) EML structure. To fabricate DQW structures, Ir(ppy)3(2% wt) and Ir(btp)2(8% wt) are used as green and red emission zones, respectively. In DQW structured EML, as shown in Fig. 1, 1nm thick layers of green and red emission zones are located middle of the EML, and the distance between these wells(x) is changed from 0nm to 10nm. As shown in Fig. 2, the emission spectra from DQW PHOLED devices are changed with different x. The intensity of the green emission(520nm) is decreased when x is decreased, and it goes to near zero when x=0nm. This behavior can be identified as the diffusion of the triplet excitons from Ir(ppy)3 to Ir(btp)2 by the Dexter energy transfer(DET). From the external quantum efficiency(EQE) of the red emission, as shown in Fig. 3, the diffusion length of the triplet excitons can be determined by the equation of DET rate, R=A Exp(-2RDA/L), where RDA is donor-acceptor distance and L is the sum of the van der Wals radii. As a result, the measured data of the red EQEs with different x are identified to theoretical result from the equation of DET rate(Fig. 4). From this results, we could confirm that the diffusion length of the triplet excitons can be determined by using DQW structure and this method is very useful to investigate the behavior of the excitons in PHOLEDs.

  • PDF

U.S. Policy and Current Practices for Blending Low-Level Radioactive Waste for Disposal (저준위 방사성폐기물의 혼합 관련 미국의 정책과 실제 적용)

  • Kessel, David S.;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.3
    • /
    • pp.235-243
    • /
    • 2016
  • In the near future, many countries, including the Republic of Korea, will face a significant increase in low level radioactive waste (LLW) from nuclear power plant decommissioning. The purpose of this paper is to look at blending as a method for enhancing disposal options for low-level radioactive waste from the decommissioning of nuclear reactors. The 2007 U.S. Nuclear Regulatory Commission strategic assessment of the status of the U.S. LLW program identified the need to move to a risk-informed and performance-based regulatory approach for managing LLW. The strategic assessment identified blending waste of varying radionuclide concentrations as a potential means of enhancing options for LLW disposal. The NRC's position is that concentration averaging or blending can be performed in a way that does not diminish the overall safety of LLW disposal. The revised regulatory requirements for blending LLW are presented in the revised NRC Branch Technical Position for Concentration Averaging and Encapsulation (CA BTP 2015). The changes to the CA BTP that are the most significant for NPP operation, maintenance and decommissioning are reviewed in this paper and a potential application is identified for decommissioning waste in Korea. By far the largest volume of LLW from NPPs will come from decommissioning rather than operation. The large volumes in decommissioning present an opportunity for significant gains in disposal efficiency from blending and concentration averaging. The application of concentration averaging waste from a reactor bio-shield is also presented.

Multi Quantum Well 구조를 이용한 Red에서 Green으로의 energy transfer mechanism의 이해

  • Kim, Gang-Hun;Park, Won-Hyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.145-145
    • /
    • 2015
  • 처음 유기물의 인광 발견 이후 Host-dopant 시스템을 이용하여 Emission layer(EML)을 Co-deopsition 하는 방법으로 주로 인광 유기 발광 다이오드를 제작 하였다. [1] co-deposition을 이용해 만든 유기 발광 다이오드에 많은 장점이 있지만, 반대로 소자를 제작하는데 있어서는 많은 문제점을 가지고 있다. [2-4] 이러한 문제점을 개선하기 위하여 co-deposition 대신 non-doped Multi Quantum Well(MQW) 구조를 사용하여 doping 하지 않는 방법을 이용하는 논문들이 보고 되고 있다. Hole, electron, exciton이 MQW 구조를 지나면서, dopant well 안에 갇히게 되고, 그 안에서 다른 layer 간에 energy transfer와, hole-electron leakage가 줄어 들어, 더 효율적인 유기 발광 다이오드를 만들 수 있게 된다. [5-7] 이 연구에서는 CBP를 Potential Barrier로 사용하고, Ir(ppy)3 (Green dopant), Ir(btp)2 (Red dopant) 를 각각 Potential Well로 사용하였고, 두께는 CBP 9nm, dopant 1nm로 하였다. 이러한 소자를 만들고 dopant를 3개의 well에 적당히 배치하여, 각 well에서의 실험적인 발광 량 과, EML 안에서의 발광 mechanism 그리고 각 potential barrier를 줄여가며 dexter, forster에 의한 energy transfer에 대하여 알 수 있었다.

  • PDF

A SAML-based SSO and B2B (SAML기반의 SSO 및 B2B)

  • Hyen, Jin-Seung;Choi, Dae-Seon;Han, Keun-Hee;Lee, Seung-Min;Jeong, Tae-Eui
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11b
    • /
    • pp.961-964
    • /
    • 2002
  • 일반적으로 Web Service란 표준 인터넷 프로토콜을 이용하여 외부에 노출된 비즈니스 기능을 프로그램적으로 접근하는 방식으로 간단한 메소드 호출뿐만 아니라 복잡한 비즈니스 프로세스까지 수행이 가능하고, 한번 배포된 Web Service는 인터넷으로 접근할 수 있는 곳이면 어디서든지 접근 및 호출이 가능하다. 현재 Web Service 구현에 있어 최대의 당면 과제는 보안문제로서. 인터넷을 이용해서 이동하고 있는 많은 양의 데이터를 안전하게 지킬 수 있는 방법의 모색에 초점이 맞추어져 있다. 이러한 보안 문제를 해결하기 위해 SAML(Security Assertion Markup Language), XKMS(XML Key Management Specification), XAML(Transaction Authority Markup Language), BTP(Business Transaction Protocol), XLANG 등을 이용한 여러 가지 방법이 시도되고 있다. 본 논문에서는 SAML을 이용한 보안 솔루션을 분석하고, SAML을 이용하여 SSO, Back Office Transaction 등의 어플리케이션을 구축하여 시뮬레이션 결과를 보이고자 한다.

  • PDF

EML doping 위치에 따른 적색 인광 OLED 특성 변화 연구

  • Hyeon, Yeong-Hwan;Choe, Byeong-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.230.1-230.1
    • /
    • 2016
  • 본 연구에서는 Host-Dopant system 기반 적색 인광 OLED의 Emitting layer(EML)에서 doping 위치에 따른 특성 변화를 분석하였다. EML은 host 물질로 60 nm 두께의 CBP를 사용하고, 적색 발광을 위해 10 %의 $Ir(btp)_2$를 CBP의 Front, Middle, Back side에 각각 20 nm씩 doping하였다. 본 구조의 적색 인광 OLED는 current density, luminance, efficiency, EL spectrum 등을 통해 전기적, 광학적 특성 변화를 확인하였다. Front, Back side에 doping으로 인한 CBP의 Energy level이 3.6 eV에서 1.9 eV로 감소하여 각각 HTL/EML, EML/HBL의 경계에 carrier direct injection이 활성화 되었고, 이로 인한 charge balance의 저하를 확인하였다. EL spectrum결과 각 소자는 CBP의 618 nm 파장 외에도, 추가적으로 TPBi의 398 nm, NPB의 456 nm의 파장을 보였다. 이를 통해 doping 위치에 따라 exciton이 형성되는 recombination zone이 이동하고 있음을 확인하였고, Front side는 6 V의 인가전압에서는 발광 파장이 398 nm에서 높은 값을 보이나 8 V, 10 V, 12 V에서 618 nm에서 높은 값을 보이는 것으로 인가전압에 의해 recombination zone이 HTL쪽으로 이동되는 것 또한 확인하였다.

  • PDF

Three White Organic Light-emitting Diodes with Blue-green Fluorescent and Red Phosphorescent Dyes

  • Galbadrakha, Ragchaa;Bang, Hwan-Seok;Baek, Heume-Il;Lee, Chang-Hee
    • Journal of Information Display
    • /
    • v.9 no.3
    • /
    • pp.23-27
    • /
    • 2008
  • This paper reports that well-balanced white emission with three primary colors can be achieved with a simple white organic light-emitting diode (WOLED) structure of ITO / $\alpha$-NPD (50 nm) / $\alpha$-NPD: Btp2Ir(acac) (8 wt%, 6 nm) / $\alpha$-NPD (5 nm) / BCP (3 nm) / $Alq_3$: C545T (0.5 wt%, 10 nm) / $Alq_3$ (40 nm) / LiF (0.5 nm) / Al (100 nm). The external quantum efficiency of the device reached 3.8% at a current density (luminance) of 4.6 mA/$cm^2$ (310 cd/$m^2$), and the maximal luminance of the device reached 19,000 cd/$m^2$ at 11.5 V. The insignificant blue shift of the emitting color with an increasing current density can be attributed to the narrowing of the exciton formation zone width.