• 제목/요약/키워드: BTH

검색결과 25건 처리시간 0.021초

Differential expression and in situ localization of a pepper defensin (CADEFl) gene in response to pathogen infection, abiotic elicitors and environmental stresses in Capsium annuum

  • Do, Hyun-Mee;Lee, Sung-Chul;Jung, Ho-Won;Hwang, Byung-Kook
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.78.2-79
    • /
    • 2003
  • Pepper defensin ( CADEFl) clone was isolated from cDNA library constructed from pepper leaves infected with avirulent strain Bv5-4a of Xanthomonu campestris pv. vesicatoria. The deduced amino acid sequence of CADEFl is 82-64% identical to that of other plant defensins. Putative protein encoded by CADEFl gene consists of 78 amino acids and 8 conserved cysteine residues to form four structure-stabilizing disulfide bridges. Transcription of the CADEF1 gene was earlier and stronger induced by X campestris pv. vesicatoria infection in the incompatible than in the compatible interaction. CADEF1 mRNA was constitutively expressed in stem, root and green fruit of pepper. Transcripts of CADEFl gene drastically accumulated in pepper leaf tissues treated With Salicylic acid (SA), methyl jasmonate (MeJA), abscisic acid (ABA), hydrogen Peroxide (H$_2$O$_2$), benzothiadiazole (BTH) and DL-${\beta}$-amino-n-butyric acid (BABA). In situ hybridization results revealed that CADEF1 mRNA was localized in the phloem areas of vascular bundles in leaf tissues treated with exogenous SA, MeJA and ABA. Strong accumulation of CADEF1 mRNA occurred in pepper leaves in response to wounding, high salinity and drought stress. These results suggest that bacterial pathogen infection, abiotic elicitors and some environmental stresses may play a significant role in signal transduction pathway for CADEF1 gene expression.

  • PDF

Functional Analysis of PepRSH (Pepper relA/spoT homolog) cloned from Capsicum annuum showing Systemic Acquired Resistance against Phytophthora capsici

  • Kim, Tae-Ho;Kim, Yeong-Tae;Byun, Myung-Ok;Shin, Jeong-Sheop;Go, Seoung-Joo
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.69.1-69
    • /
    • 2003
  • RSH (relA/spoT homolog) has been known to determine the level of guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp), which are the effector nucleotide of the prokaryotic stringent response and also play a role in antibiotic production and differentiation in Streptomyces species but not a little in eukaryotic organism, especially in plant. Salicylic acid (SA), a critical signal molecule of establishing systemic acquired resistance (SAR), could induce SAR in Pepper (Capcicum annuum) against Phytophthora capsici. And the extent of SAR induction was in proportion to the dosage of SA (or BTH). Suppression subtractive hybridization (SSH), a PCR-based method for cDNA subtraction, was carried out between SA-treated and non-SA-treated pepper leaves to isolate genes which may be responsible for defense signaling against pathogens. Early upregulated gene was selected from reverse northern and kinetics of SSH-genes transcripts in SA-treated pepper leaves upon SA treatment. Full-length cDNA of the gene (PepRSH; Pepper RelA / SpoT homolog) had an open reading frame (ORF) of 2166 bp encoding a protein of 722 amino acids and a significant homology with (p)ppGpp phosphohydrolase or synthetase. Genomic DNA gel blot analysis showed that pepper genome has at least single copy of PepRSH. PepRSH transcripts was very low in untreated pepper leaves but strongly induced by SA and methyljasmonic acid (MeJA), indicating that PepRSH may share common SA and MeJA-mediated signal transduction pathway Functional analysis in E. coli showed PepRSH confers phenotypes associated with (p)ppGpp synthesis through a complementation using active site mutagenesis.

  • PDF

Root Colonization and ISR-mediated Anthracnose Disease Control in Cucumber by Strain Enterobacter asburiae B1

  • Bharathkumar, S.;Park, Jin-Woo;Han, Ji-Hee;Park, Kyung-Seok
    • The Plant Pathology Journal
    • /
    • 제25권4호
    • /
    • pp.333-343
    • /
    • 2009
  • Here, we show that an endophytic bacterial strain, Enterobacter asburiae B1 exhibits the ability to elicit ISR in cucumber, tobacco and Arabidopsis thaliana. This indicates that strain B1 has a widespread ability to elicit ISR on various host plants. In this study, E. asburiae strain B1 did not show antifungal activity against tested major fungal pathogens, Colletotrichum orbiculare, Botrytis cinerea, Phytophthora capsici, Rhizoctonia solani, and Fusarium oxysporum. Moreover, the siderophore production by E. asburiae strain B1 was observed under in vitro condition. In greenhouse experiments, the root treatment of strain B1 significantly reduced disease severity of cucumber anthracnose caused by fungal pathogen C. orbiculare compared to nontreated control plants. By root treatment of strain B1 more than 50% disease control against anthracnose on cucumber was observed in all greenhouse experiments. Simultaneously, under the greenhouse condition, the soil drench of strain B1 and a chemical inducer benzothiadiazole (BTH) to tobacco plants induced GUS activity which is linked with activation of PR promoter gene. Furthermore, in Arabidopsis thaliana plants the soil drench of strain B1 induced the defense gene expression of PR1 and PDF1.2 related to salicylic acid and jasmonic acid/ethylene signaling pathways, respectively. In this study, for the main focus on root colonization by strain B1 associated with defense responses, bacterial cells of strain B1 was tagged with the gfp gene encoding the green fluorescent protein in order to determine the colonization pattern of strain B1 in cucumber. The gfp-tagged B1 cells were found on root surface and internal colonization in root, stem, and leaf. In addition to this, the scanning electron microscopy observation showed that E. asburiae strain B1 was able to colonized cucumber root surface.

The association between radiographic embrasure morphology and interdental papilla reconstruction using injectable hyaluronic acid gel

  • Lee, Won-Pyo;Seo, Yo-Seob;Kim, Hee-Jung;Yu, Sang-Joun;Kim, Byung-Ock
    • Journal of Periodontal and Implant Science
    • /
    • 제46권4호
    • /
    • pp.277-287
    • /
    • 2016
  • Purpose: The purpose of this study was to evaluate the clinical efficacy of enhancing deficient interdental papilla with hyaluronic acid gel injection by assessing the radiographic anatomical factors affecting the reconstruction of the interdental papilla. Methods: Fifty-seven treated sites from 13 patients (6 males and 7 females) were included. Patients had papillary deficiency in the upper anterior area. Prior to treatment, photographic and periapical radiographic standardization devices were designed for each patient. A 30-gauge needle was used with an injection-assistance device to inject a hyaluronic acid gel to the involved papilla. This treatment was repeated up to 5 times every 3 weeks. Patients were followed up for 6 months after the initial gel application. Clinical photographic measurements of the black triangle area (BTA), height (BTH), and width (BTW) and periapical radiographic measurements of the contact point and the bone crest (CP-BC) and the interproximal distance between roots (IDR) were undertaken using computer software. The interdental papilla reconstruction rate (IPRR) was calculated to determine the percentage change of BTA between the initial and final examination and the association between radiographic factors and the reconstruction of the interdental papilla by means of injectable hyaluronic acid gel were evaluated. Results: All sites showed improvement between treatment examinations. Thirty-six sites had complete interdental papilla reconstruction and 21 sites showed improvement ranging from 19% to 96%. The CP-BC correlated with the IPRR. More specifically, when the CP-BC reached 6 mm, virtually complete interdental papilla reconstruction via injectable hyaluronic acid gel was achieved. Conclusions: These results suggest that the CP-BC is closely related to the efficacy of hyaluronic acid gel injection for interdental papilla reconstruction.

독도 자생식물 번행초로부터 분리한 바실러스 속 식물생장촉진근권 세균에 의한 식물병 저항성 유도 (Induced Systemic Resistance in plants by Bacillus sp. Isolated from Dok-do Islands)

  • 김승건;손진수;권덕기;김사열
    • 한국미생물·생명공학회지
    • /
    • 제47권4호
    • /
    • pp.596-602
    • /
    • 2019
  • 본 연구는 독도에서 서식하는 자생식물인 번행초와 번행초의 근권에서 미생물들을 분리하였다. 분리 균의 식물생장 촉진 특성을 확인하였으며, 식물 병에 대한 저항성을 유도효과를 가진 균 중 범용성이 좋은 바실러스 속 세균에 초점을 두어 실험을 진행하였다. 번행초의 분리 균들은 근권환경에 52종, 식물체 내생 환경에서 51종, 식물체 표면에서 35종으로 총 138종의 분리 균이 확보되었다. 분리 균의 식물생장촉진특징을 확인하여 보기 위하여, 식물 성장에 필요한 난용성인 가용화와 철의 결합에 사용되는 siderophore의 생산능, 식물생장호르몬인 옥신 생산능을 확인하여 각각의 비율을 확인하였고, 3가지 특성을 모두 가진 균의 비율을 확인하였다. 또한 분리 균을 담배에 처리하여 병원균에 대한 유도전신저항성을 확인하였고, 그 중 효과가 좋았던 균 35종을 부분 동정한 결과, 바실러스 속은 KUDC6588, KUDC6597, KUDC6606, KUDC6614, KUDC6615, KUDC6619로 나타났다. 6종의 바실러스 속 세균들은 모두 저항성 향상에 좋은 효과를 보였으며, 특히 KUDC6619의 경우 현재 화학항생물질인 BTH와도 비슷한 효과를 보였다. KUDC6619는 대표적인 식용작물인 고추에서도 유도전신저항성의 향상에 대한 좋은 결과를 나타내었다. 따라서 사람과 동물에 대한 안전성, 식물 병원성 등 다양한 테스트를 진행한 후, 안정성이 확보된다면, KUDC6619는 식물의 ISR을 야기하는 생물농약 으로서의 높은 산업적 가치가 있을 것으로 보인다.