• Title/Summary/Keyword: BT commercial product

Search Result 1, Processing Time 0.017 seconds

Resistance and Susceptibility of Diamondback Moth, Plutella xylostella Strains Collected from Different Region in Korea to Bacillus thuringiensis (국내 지역별 채집계통 및 감수성계통 배추좀나방에 대한 Bacillus thuringiensis 제품의 생물활성 비교)

  • Kim, Young-Rim;Cho, Min-Su;Oh, Se-Mun;Kim, Sung-Woo;Youn, Young-Nam;Yu, Yong-Man
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.2
    • /
    • pp.123-132
    • /
    • 2010
  • Six populations of the diamondback moth, Plutella xylostella, were collected from the different national areas for resistance and reared in laboratory for two sensitive population. These populations of P. xylostella were examined the developed resistance against commercial products of Bacillus thuringiensis. There were 3 products with B. thuringiensis subsp. kurstaki including Tyuneup$^{(R)}$, Thuricide$^{(R)}$ and Geumulmang$^{(R)}$ and 2 products with B. thuringiensis subsp. aizawai including Tobagi$^{(R)}$ and Scorpion$^{(R)}$. The sensitive population of diamondback moths were provided from National Academy of Agricultural Science (NP) and Highland Agriculture Research Center (GR population) and field populations were caught from 6 different national areas. Resistance against Tyuneup$^{(R)}$ was developed 4.8 and 2.5 times in SP and HS compared with GR population of diamondback moth, respectively. In case of Geumulmang$^{(R)}$, it was developed 9.9 and 6.8 times in SP and NM population compared with NP population, respectively. Otherwise, Tobagi$^{(R)}$ was showed higher resistance in HS than any other population compared with GR population, however, Scorpion$^{(R)}$ that is a same strain with Tobagi$^{(R)}$, was showed only double resistance to SP population. It was supposed that the development of resistance to B. thuringiensis might be caused by the continuous application of the specific commercial product at the specific area. So, we need to use the commercial products of B. thuringiensis in rotation with different B. thuringiensis strains. In the other hand, when HS population with highest resistance were reared in laboratory, their resistance ratio was rapidly dropped to 1.1 times at second generation. We have to examined the resistance mechanism of the diamondback moth to B. thuringiensis strains.