• Title/Summary/Keyword: BPNN

Search Result 86, Processing Time 0.022 seconds

Implementation of a pervasive health care system for Cardiac patient on mobile environment (모바일 환경에서 심장병 환자를 위한 편재형 헬스 케어 시스템의 구현)

  • Kim, Jeong-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.5
    • /
    • pp.117-124
    • /
    • 2008
  • It improves human being's life quality that all people can have mure convenient medical service under pervasive computing environment. For a pervasive health care application for cardiac patient, we've implemented a health care system, which is composed of three parts. Various sensors monitor outer as well as inner environment of human such as temperature, humidity, light and electrocardiogram, etc. These sensors form a network based on Zigbee. And medical information server accumulates sensing values and performs back-end processing. To simply transfer these sensing values to a medical team is a simple level's medical service. So, we've designed a new service model based on back propagation neural network for more improved medical service. Our experiments show that a proposed healthcare system can give high level's medical service because it can recognize human's context more concretely.

  • PDF

Analyzing Factors Contributing to Research Performance using Backpropagation Neural Network and Support Vector Machine

  • Ermatita, Ermatita;Sanmorino, Ahmad;Samsuryadi, Samsuryadi;Rini, Dian Palupi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.153-172
    • /
    • 2022
  • In this study, the authors intend to analyze factors contributing to research performance using Backpropagation Neural Network and Support Vector Machine. The analyzing factors contributing to lecturer research performance start from defining the features. The next stage is to collect datasets based on defining features. Then transform the raw dataset into data ready to be processed. After the data is transformed, the next stage is the selection of features. Before the selection of features, the target feature is determined, namely research performance. The selection of features consists of Chi-Square selection (U), and Pearson correlation coefficient (CM). The selection of features produces eight factors contributing to lecturer research performance are Scientific Papers (U: 154.38, CM: 0.79), Number of Citation (U: 95.86, CM: 0.70), Conference (U: 68.67, CM: 0.57), Grade (U: 10.13, CM: 0.29), Grant (U: 35.40, CM: 0.36), IPR (U: 19.81, CM: 0.27), Qualification (U: 2.57, CM: 0.26), and Grant Awardee (U: 2.66, CM: 0.26). To analyze the factors, two data mining classifiers were involved, Backpropagation Neural Networks (BPNN) and Support Vector Machine (SVM). Evaluation of the data mining classifier with an accuracy score for BPNN of 95 percent, and SVM of 92 percent. The essence of this analysis is not to find the highest accuracy score, but rather whether the factors can pass the test phase with the expected results. The findings of this study reveal the factors that have a significant impact on research performance and vice versa.

In-depth exploration of machine learning algorithms for predicting sidewall displacement in underground caverns

  • Hanan Samadi;Abed Alanazi;Sabih Hashim Muhodir;Shtwai Alsubai;Abdullah Alqahtani;Mehrez Marzougui
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.307-321
    • /
    • 2024
  • This paper delves into the critical assessment of predicting sidewall displacement in underground caverns through the application of nine distinct machine learning techniques. The accurate prediction of sidewall displacement is essential for ensuring the structural safety and stability of underground caverns, which are prone to various geological challenges. The dataset utilized in this study comprises a total of 310 data points, each containing 13 relevant parameters extracted from 10 underground cavern projects located in Iran and other regions. To facilitate a comprehensive evaluation, the dataset is evenly divided into training and testing subset. The study employs a diverse array of machine learning models, including recurrent neural network, back-propagation neural network, K-nearest neighbors, normalized and ordinary radial basis function, support vector machine, weight estimation, feed-forward stepwise regression, and fuzzy inference system. These models are leveraged to develop predictive models that can accurately forecast sidewall displacement in underground caverns. The training phase involves utilizing 80% of the dataset (248 data points) to train the models, while the remaining 20% (62 data points) are used for testing and validation purposes. The findings of the study highlight the back-propagation neural network (BPNN) model as the most effective in providing accurate predictions. The BPNN model demonstrates a remarkably high correlation coefficient (R2 = 0.99) and a low error rate (RMSE = 4.27E-05), indicating its superior performance in predicting sidewall displacement in underground caverns. This research contributes valuable insights into the application of machine learning techniques for enhancing the safety and stability of underground structures.

Prediction of rock slope failure using multiple ML algorithms

  • Bowen Liu;Zhenwei Wang;Sabih Hashim Muhodir;Abed Alanazi;Shtwai Alsubai;Abdullah Alqahtani
    • Geomechanics and Engineering
    • /
    • v.36 no.5
    • /
    • pp.489-509
    • /
    • 2024
  • Slope stability analysis and prediction are of critical importance to geotechnical engineers, given the severe consequences associated with slope failure. This research endeavors to forecast the factor of safety (FOS) for slopes through the implementation of six distinct ML techniques, including back propagation neural networks (BPNN), feed-forward neural networks (FFNN), Takagi-Sugeno fuzzy system (TSF), gene expression programming (GEP), and least-square support vector machine (Ls-SVM). 344 slope cases were analyzed, incorporating a variety of geometric and shear strength parameters measured through the PLAXIS software alongside several loss functions to assess the models' performance. The findings demonstrated that all models produced satisfactory results, with BPNN and GEP models proving to be the most precise, achieving an R2 of 0.86 each and MAE and MAPE rates of 0.00012 and 0.00002 and 0.005 and 0.004, respectively. A Pearson correlation and residuals statistical analysis were carried out to examine the importance of each factor in the prediction, revealing that all considered geomechanical features are significantly relevant to slope stability. However, the parameters of friction angle and slope height were found to be the most and least significant, respectively. In addition, to aid in the FOS computation for engineering challenges, a graphical user interface (GUI) for the ML-based techniques was created.

Techniques for Yield Prediction from Corn Aerial Images - A Neural Network Approach -

  • Zhang, Q.;Panigrahi, S.;Panda, S.S.;Borhan, Md.S.
    • Agricultural and Biosystems Engineering
    • /
    • v.3 no.1
    • /
    • pp.18-28
    • /
    • 2002
  • Neural network based models were developed and evaluated for predicting corn yield from aerial images based on 1998 and 1994 image data. The model used images in multi-spectral bands such as R, G, B, and IR (Red, Green, Blue and Infrared). The inputs to the neural network consisted of mean and standard deviation of multispectral bands of the aerial images. Performances of several neural network architectures using back-propagation with momentum were compared. The maximum yield prediction accuracy obtained was 97.81%. The BPNN model prediction accuracy could be enhanced by using more number of observations to the model, other data transformation techniques, or by performing optical calibration of the aerial image.

  • PDF

The Neural-Network Approach to Recognize Defect Pattern in LED Manufacturing

  • Chen, Wen-Chin;Tsai, Chih-Hung;Hsu, Shou-Wen
    • International Journal of Quality Innovation
    • /
    • v.7 no.3
    • /
    • pp.58-69
    • /
    • 2006
  • This paper presents neural network-based recognition system for automatic light emitting diode (LED) inspection. The back-propagation neural network (BPNN) is proposed and tested. The current-voltage (I-V) characteristic data of LED from the inspection process is used for the network training and testing. This study selects 300 random samples as network training and employs 100 samples as network testing. The experimental results show that if the classification work is done well, the accuracy of recognition is 100%, and the testing speed of the proposed recognition system is almost one half faster than the traditional inspection system does. The proposed neural-network approach is successfully demonstrated by real data sets and can be effectively developed as a recognition system for a practical application purpose.

Knowledge-Based methodologies for the Credit Rating : Application and Comparison (신용카드 고객의 신용 예측을 위한 지식기반 방법들: 적용 및 비교 연구)

  • 주석진;김재경;성태경;김중한
    • Journal of Intelligence and Information Systems
    • /
    • v.5 no.1
    • /
    • pp.49-64
    • /
    • 1999
  • 본 연구는 백화점 고객이 신용 카드 신청 요구 시에 작성되는 가입 정보 및 사용되고 있는 고객의 거래 정보는 카드 사용 패턴으로 신용도를 예측하는 여러 방법론을 제시하고 성능을 비교하였다. 가입 정보를 분석하기 위해 역전파 신경망(Back-Propagation Neural Network, BPNN), 사례기반추론(Case-Based reasoning)을, 거래 정보를 분석하기 위해 역전파 신경망과 더불어 시간지연 신경망(Time-Delayed Neural Network, TDNN)을 각각 사용하여 그 결과를 비교하였다. 또한 전체시스템의 적중률을 높이기 위햐여, ID3와 신경망을 이용한 Meta-Leaning 방법을 제시하였으며, Meta-Learning 방법과 다른 방법들을 비교, 분석을 하였다. 본 연구에서는 모형 수립과 검증을 위하여 T백화점의 실제 신용 카드 가입 고객 데이터를 이용하여 실험하였다. 데이터의 성격에 따라 각 모델의 예측력에는 차이가 나타났으나, 신경망 모형의 예측력이 우수하였으며, 시간적 특성을 고려하는 시간지연 신경회로망 모형의 예측력은 더욱 우수하게 나타났다. 또한 Meta-Learning 모형을 사용하면 예측력이 더 높아진다는 것을 확인할 수 있었다.

  • PDF

Implementation of sensor network based health care system for diabetes patient

  • Kim, Jeong-Won
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.4
    • /
    • pp.454-458
    • /
    • 2008
  • It can improve human being's life quality that all people can have more convenient medical service under pervasive computing environment. For a pervasive health care application for diabetes patient, we've implemented a health care system, which is composed of three parts. Various sensors monitor both outer and inner environment of human such as temperature, blood pressure, pulse, and glycemic index, etc. These sensors form zigbee based sensor network. And medical information server accumulates sensing values and performs back-end processing. To simply transfer these sensing values to a medical team is a low level's medical service. So, we've designed a new service model based on back propagation neural network for more improved medical service. Our experiments show that a proposed healthcare system can give high level's medical service because it can recognize human's context more concretely.

Adaption of Neural Network Algorithm for Pattern Recognition of Weld Flaws (용접결함 패턴인식을 위한 신경망 알고리즘 적용)

  • Kim, Chang-Hyun;Yu, Hong-Yeon;Hong, Sung-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.1
    • /
    • pp.65-72
    • /
    • 2007
  • In this study, we used nondestructive test based on ultrasonic test as inspection method and compared backpropagation neural network(BPNN) with probabilistic neural network(PNN) as pattern recognition algorithm of weld flaws. For this purpose, variables are applied the same to two algorithms. Where, feature variables are zooming flaw signals of reflected whole signals from weld flaws in time domain. Through this process, we compared advantages/ disadvantages of two algorithms and confirmed application methods of two algorithms.

Recognition of Plasma- Induced X-Ray Photoelectron Spectroscopy Fault Pattern Using Wavelet and Neural Network (웨이블렛과 신경망을 이용한 플라즈마-유도 X-Ray Photoelectron Spectroscopy 고장 패턴의 인식)

  • Kim, Soo-Youn;Kim, Byung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.135-137
    • /
    • 2006
  • To improve device yield and throughput, faults in plasma processing equipment should be quickly and accurately diagnosed. Despite many useful information of ex-situ sensor measurements, their applications to recognize plasma faultshave not been investigated. In this study, a new technique to identify fault causes by recognizing X-ray photoelectron spectroscopy (XPS) using neural network and continuous wavelet transformation (CWT). The presented technique was evaluated with the plasma etch data. A totalof 17 experiments were conducted for model construction. Model performance was investigated from the perspectives of training error, testing error, and recognition accuracy with respect to various thresholds. CWT-based BPNN models demonstrated a higher prediction accuracy of about 26%. Their advantages over pure XPS-based models were conspicuous in all three measures at small networks.

  • PDF