• Title/Summary/Keyword: BPNN

Search Result 86, Processing Time 0.028 seconds

BPNN Algorithm with SVD Technique for Korean Document categorization (한글문서분류에 SVD를 이용한 BPNN 알고리즘)

  • Li, Chenghua;Byun, Dong-Ryul;Park, Soon-Choel
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.2
    • /
    • pp.49-57
    • /
    • 2010
  • This paper proposes a Korean document. categorization algorithm using Back Propagation Neural Network(BPNN) with Singular Value Decomposition(SVD). BPNN makes a network through its learning process and classifies documents using the network. The main difficulty in the application of BPNN to document categorization is high dimensionality of the feature space of the input documents. SVD projects the original high dimensional vector into low dimensional vector, makes the important associative relationship between terms and constructs the semantic vector space. The categorization algorithm is tested and compared on HKIB-20000/HKIB-40075 Korean Text Categorization Test Collections. Experimental results show that BPNN algorithm with SVD achieves high effectiveness for Korean document categorization.

Random generator-controlled backpropagation neural network to predicting plasma process data

  • Kim, Sungmo;Kim, Sebum;Kim, Byungwhan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.599-602
    • /
    • 2003
  • A new technique is presented to construct predictive models of plasma etch processes. This was accomplished by combining a backpropagation neural network (BPNN) and a random generator (RC). The RG played a critical role to control neuron gradients in the hidden layer, The predictive model constructed in this way is referred to as a randomized BPNN (RG-BPNN). The proposed scheme was evaluated with a set of experimental plasma etch process data. The etch process was characterized by a 2$^3$ full factorial experiment. The etch responses modeled are 4, including aluminum (Al) etch rate, profile angle, Al selectivity, and do bias. Additional test data were prepared to evaluate model appropriateness. The performance of RC-BPNN was evaluated as a function of the number of hidden neurons and the range of gradient. for given range and hidden neurons, 100 sets of random neuron gradients were generated and among them one best set was selected for evaluation. Compared to the conventional BPNN, the proposed RC-BPNN demonstrated about 50% improvements in all comparisons. This illustrates that the RG-BPNN of multi-valued gradients is an effective way to considerably improve the predictive ability of current BPNN of single-valued gradient.

  • PDF

Prediction of plasma etching using genetic-algorithm controlled backpropagation neural network

  • Kim, Sung-Mo;Kim, Byung-Whan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1305-1308
    • /
    • 2003
  • A new technique is presented to construct a predictive model of plasma etch process. This was accomplished by combining a backpropagation neural network (BPNN) and a genetic algorithm (GA). The predictive model constructed in this way is referred to as a GA-BPNN. The GA played a role of controlling training factors simultaneously. The training factors to be optimized are the hidden neuron, training tolerance, initial weight magnitude, and two gradients of bipolar sigmoid and linear functions. Each etch response was optimized separately. The proposed scheme was evaluated with a set of experimental plasma etch data. The etch process was characterized by a $2^3$ full factorial experiment. The etch responses modeled are aluminum (A1) etch rate, silica profile angle, A1 selectivity, and dc bias. Additional test data were prepared to evaluate model appropriateness. The GA-BPNN was compared to a conventional BPNN. Compared to the BPNN, the GA-BPNN demonstrated an improvement of more than 20% for all etch responses. The improvement was significant in the case of A1 etch rate.

  • PDF

Fingerprint Verification Based on Invariant Moment Features and Nonlinear BPNN

  • Yang, Ju-Cheng;Park, Dong-Sun
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.800-808
    • /
    • 2008
  • A fingerprint verification system based on a set of invariant moment features and a nonlinear Back Propagation Neural Network(BPNN) verifier is proposed. An image-based method with invariant moment features for fingerprint verification is used to overcome the demerits of traditional minutiae-based methods and other image-based methods. The proposed system contains two stages: an off-line stage for template processing and an on-line stage for testing with input fingerprints. The system preprocesses fingerprints and reliably detects a unique reference point to determine a Region-of-Interest(ROI). A total of four sets of seven invariant moment features are extracted from four partitioned sub-images of an ROI. Matching between the feature vectors of a test fingerprint and those of a template fingerprint in the database is evaluated by a nonlinear BPNN and its performance is compared with other methods in terms of absolute distance as a similarity measure. The experimental results show that the proposed method with BPNN matching has a higher matching accuracy, while the method with absolute distance has a faster matching speed. Comparison results with other famous methods also show that the proposed method outperforms them in verification accuracy.

A Performance Comparison of Backpropagation Neural Networks and Learning Vector Quantization Techniques for Sundanese Characters Recognition

  • Haviluddin;Herman Santoso Pakpahan;Dinda Izmya Nurpadillah;Hario Jati Setyadi;Arif Harjanto;Rayner Alfred
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.101-106
    • /
    • 2024
  • This article aims to compare the accuracy of the Backpropagation Neural Network (BPNN) and Learning Vector Quantization (LVQ) approaches in recognizing Sundanese characters. Based on experiments, the level of accuracy that has been obtained by the BPNN technique is 95.23% and the LVQ technique is 66.66%. Meanwhile, the learning time that has been required by the BPNN technique is 2 minutes 45 seconds and then the LVQ method is 17 minutes 22 seconds. The results indicated that the BPNN technique was better than the LVQ technique in recognizing Sundanese characters in accuracy and learning time.

A Water-saving Irrigation Decision-making Model for Greenhouse Tomatoes based on Genetic Optimization T-S Fuzzy Neural Network

  • Chen, Zhili;Zhao, Chunjiang;Wu, Huarui;Miao, Yisheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.2925-2948
    • /
    • 2019
  • In order to improve the utilization of irrigation water resources of greenhouse tomatoes, a water-saving irrigation decision-making model based on genetic optimization T-S fuzzy neural network is proposed in this paper. The main work are as follows: Firstly, the traditional genetic algorithm is optimized by introducing the constraint operator and update operator of the Krill herd (KH) algorithm. Secondly, the weights and thresholds of T-S fuzzy neural network are optimized by using the improved genetic algorithm. Finally, on the basis of the real data set, the genetic optimization T-S fuzzy neural network is used to simulate and predict the irrigation volume for greenhouse tomatoes. The performance of the genetic algorithm improved T-S fuzzy neural network (GA-TSFNN), the traditional T-S fuzzy neural network algorithm (TSFNN), BP neural network algorithm(BPNN) and the genetic algorithm improved BP neural network algorithm (GA-BPNN) is compared by simulation. The simulation experiment results show that compared with the TSFNN, BPNN and the GA-BPNN, the error of the GA-TSFNN between the predicted value and the actual value of the irrigation volume is smaller, and the proposed method has a better prediction effect. This paper provides new ideas for the water-saving irrigation decision in greenhouse tomatoes.

Evolutionary Neural Network based on Quantum Elephant Herding Algorithm for Modulation Recognition in Impulse Noise

  • Gao, Hongyuan;Wang, Shihao;Su, Yumeng;Sun, Helin;Zhang, Zhiwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2356-2376
    • /
    • 2021
  • In this paper, we proposed a novel modulation recognition method based on quantum elephant herding algorithm (QEHA) evolving neural network under impulse noise environment. We use the adaptive weight myriad filter to preprocess the received digital modulation signals which passing through the impulsive noise channel, and then the instantaneous characteristics and high order cumulant features of digital modulation signals are extracted as classification feature set, finally, the BP neural network (BPNN) model as a classifier for automatic digital modulation recognition. Besides, based on the elephant herding optimization (EHO) algorithm and quantum computing mechanism, we design a quantum elephant herding algorithm (QEHA) to optimize the initial thresholds and weights of the BPNN, which solves the problem that traditional BPNN is easy into local minimum values and poor robustness. The experimental results prove that the adaptive weight myriad filter we used can remove the impulsive noise effectively, and the proposed QEHA-BPNN classifier has better recognition performance than other conventional pattern recognition classifiers. Compared with other global optimization algorithms, the QEHA designed in this paper has a faster convergence speed and higher convergence accuracy. Furthermore, the effect of symbol shape has been considered, which can satisfy the need for engineering.

Modeling of AA5052 Sheet Incremental Sheet Forming Process Using RSM-BPNN and Multi-optimization Using Genetic Algorithms (반응표면법-역전파신경망을 이용한 AA5052 판재 점진성형 공정변수 모델링 및 유전 알고리즘을 이용한 다목적 최적화)

  • Oh, S.H.;Xiao, X.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.30 no.3
    • /
    • pp.125-133
    • /
    • 2021
  • In this study, response surface method (RSM), back propagation neural network (BPNN), and genetic algorithm (GA) were used for modeling and multi-objective optimization of the parameters of AA5052-H32 in incremental sheet forming (ISF). The goal of optimization is to determine the maximum forming angle and minimum surface roughness, while varying the production process parameters, such as tool diameter, tool spindle speed, step depth, and tool feed rate. A Box-Behnken experimental design (BBD) was used to develop an RSM model and BPNN model to model the variations in the forming angle and surface roughness based on variations in process parameters. Subsequently, the RSM model was used as the fitness function for multi-objective optimization of the ISF process the GA. The results showed that RSM and BPNN can be effectively used to control the forming angle and surface roughness. The optimized Pareto front produced by the GA can be utilized as a rational design guide for practical applications of AA5052 in the ISF process

Analysis of Two-Dimensional Fluorescence Spectra in Biotechnological Processes by Artificial Neural Networks II - Process Modeling using Backpropagation Neural Network - (인공신경망에 의만 생물공정에서 2차원 영광스펙트럼의 분석 II - 역전파 신경망에 의한 공정의 모델링 -)

  • Lee Kum-Il;Yim Yong-Sik;Sohn Ok-Jae;Chung Sang-Wook;Rhee Jong Il
    • KSBB Journal
    • /
    • v.20 no.4
    • /
    • pp.299-304
    • /
    • 2005
  • A two-dimensional (2D) spectrofluorometer was used to monitor various fermentation processes with recombinant E. coli for the production of 5-aminolevulinic acid (ALA). The whole fluorescence spectral data obtained during a process were analyed using artificial neural networks, i.e. self-organizing map (SOM) and feedforward backpropagation neural network (BPNN).Based on the classified fluorescence spectra a supervised BPNN algorithm was used to predict some of the process parameters. It was also shown that the BPNN models could elucidate some sections of the process performance, e.g. forecasting the process performance.

A Comparative Study between BPNN and RNN on the Settlement Prediction during Soft Ground Embankment (연약지반상의 성토시 침하예측에 대한 BPNN과 RNN의 비교 연구)

  • Kim, Dong-Sik;Chae, Young-Su;Kim, Young-Su;Kim, Hyun-Dong;Kim, Seon Hyung
    • Journal of the Society of Disaster Information
    • /
    • v.3 no.1
    • /
    • pp.37-53
    • /
    • 2007
  • Various difficult problems occur due to insufficient bearing capacity or excessive settlements when constructing roads or large complexes. Accurate predictions on the final settlement and consolidation time can help in choosing the ground improvement method and thus enables to save time and expense of the whole project. Asaoka's method is probably the most frequently used for settlement prediction which are based on Terzaghi's one dimensional consolidation theory. Empirical formulae such as Hyperbolic method and Hoshino's method are also often used. However, it is known that the settlement predicted by these methods do not match with the actual settlements. Furthermore these methods cannot be used at design stage when there is no measured data. To find an elaborate method in predicting settlement in embankments using various test results and actual settlement data from domestic sites, Back-Propagation Neural Network(BPNN) and Recurrent Neural Network(RNN) were employed and the most suitable model structures were obtained. Predicted settlement values by the developed models were compared with the measured values as well as numerical analysis results. Analysis of the results showed that RNN yielded more compatible predictions with actual data than BPNN and predictions using cone penetration resistance were closer to actual data than predictions using SPT results. Also, it was found that the developed method were very competitive with the numerical analysis considering the number of input data, complexity and effort in modelling. It is believed that RNN using cone penetration test results can make a highly efficient tool in predicting settlements if enough field data can be obtained.

  • PDF