• 제목/요약/키워드: BP algorithm

검색결과 240건 처리시간 0.026초

Image Recognition by Learning Multi-Valued Logic Neural Network

  • Kim, Doo-Ywan;Chung, Hwan-Mook
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제2권3호
    • /
    • pp.215-220
    • /
    • 2002
  • This paper proposes a method to apply the Backpropagation(BP) algorithm of MVL(Multi-Valued Logic) Neural Network to pattern recognition. It extracts the property of an object density about an original pattern necessary for pattern processing and makes the property of the object density mapped to MVL. In addition, because it team the pattern by using multiple valued logic, it can reduce time f3r pattern and space fer memory to a minimum. There is, however, a demerit that existed MVL cannot adapt the change of circumstance. Through changing input into MVL function, not direct input of an existed Multiple pattern, and making it each variable loam by neural network after calculating each variable into liter function. Error has been reduced and convergence speed has become fast.

Genetic Algorithms를 이용한 비선형 시스템의 신경망 제어 (Neuro-Control of Nonlinear Systems Using Genetic Algorithms)

  • 조현섭;민진경;유인호
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2006년도 춘계학술발표논문집
    • /
    • pp.316-319
    • /
    • 2006
  • Connectionist networks, also called neural networks, have been broadly applied to solve many different problems since McCulloch and Pitts had shown mathematically their information processing ability in 1943. In this thesis, we present a genetic neuro-control scheme for nonlinear systems. Our method is different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its training.

  • PDF

미지의 비선형 시스템 제어를 위한 DNU와 GA알고리즘 적용에 관한 연구 (Dynamic Neural Units and Genetic Algorithms With Applications to the Control of Unknown Nonlinear Systems)

  • ;;조현섭;전정채
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2486-2489
    • /
    • 2002
  • Pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our method is different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its training.

  • PDF

Improvement of an Early Failure Rate By Using Neural Control Chart

  • Jang, K.Y.;Sung, C.J.;Lim, I.S.
    • International Journal of Reliability and Applications
    • /
    • 제10권1호
    • /
    • pp.1-15
    • /
    • 2009
  • Even though the impact of manufacturing quality to reliability is not considered much as well as that of design area, a major cause of an early failure of the product is known as manufacturing problem. This research applies two different types of neural network algorithms, the Back propagation (BP) algorithm and Learning Vector Quantization (LVQ) algorithm, to identify and classify the nonrandom variation pattern on the control chart based on knowledge-based diagnosis of dimensional variation. The performance and efficiency of both algorithms are evaluated to choose the better pattern recognition system for auto body assembly process. To analyze hundred percent of the data obtained by Optical Coordinate Measurement Machine (OCMM), this research considers an application in which individual observations rather than subsample means are used. A case study for analysis of OCMM data in underbody assembly process is presented to demonstrate the proposed knowledge-based pattern recognition system.

  • PDF

이륜구동 이동로봇의 균형을 위한 뉴로 퍼지 제어 (Neuro-fuzzy Control for Balancing a Two-wheel Mobile Robot)

  • 박영준;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제22권1호
    • /
    • pp.40-45
    • /
    • 2016
  • This paper presents the neuro-fuzzy control method for balancing a two-wheel mobile robot. A two-wheel mobile robot is built for the experimental studies. On-line learning algorithm based on the back-propagation(BP) method is derived for the Takagi-Sugeno(T-S) neuro-fuzzy controller. The modified error is proposed to learn the B-P algorithm for the balancing control of a two-wheel mobile robot. The T-S controller is implemented on a DSP chip. Experimental studies of the balancing control performance are conducted. Balancing control performances with disturbance are also conducted and results are evaluated.

위치제어계에서 신경망 알고리즘을 이용하여 가속도 제어기능을 갖는 PIDA 제어기 설계 (In Position control system, the Design of PIDA Controller using Neural Network algorithm with Acceleration control function)

  • 최의혁;박광현;하홍곤
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2002년도 춘계종합학술대회
    • /
    • pp.310-313
    • /
    • 2002
  • In industrial actual control system, PID controller has been used with its high delicate control system in position control system. PID controller has simple structure and superior ability in several characteristics. When the response of system is changed by delay time, variable load , disturbances and external environment, control gain of PID controller must be readjusted on the system dynamic characteristics. Therefore, a control ability of PID controller is degraded when the control gain is inappropriately determined. When the response characteristic of system is changed under a condition, control gain of PID controller must be changed adaptively to be a waited response of system. In this paper an PIDA controller is constructed by Two-Layers Neural Network applying back-propagation(BP) algorithm. Form the result of compute. simulation in the proposed controller, its usefulness is verified.

  • PDF

Adaptive Neuro Fuzzy Inference System (ANFIS) and Artificial Neural Networks (ANNs) for structural damage identification

  • Hakim, S.J.S.;Razak, H. Abdul
    • Structural Engineering and Mechanics
    • /
    • 제45권6호
    • /
    • pp.779-802
    • /
    • 2013
  • In this paper, adaptive neuro-fuzzy inference system (ANFIS) and artificial neural networks (ANNs) techniques are developed and applied to identify damage in a model steel girder bridge using dynamic parameters. The required data in the form of natural frequencies are obtained from experimental modal analysis. A comparative study is made using the ANNs and ANFIS techniques and results showed that both ANFIS and ANN present good predictions. However the proposed ANFIS architecture using hybrid learning algorithm was found to perform better than the multilayer feedforward ANN which learns using the backpropagation algorithm. This paper also highlights the concept of ANNs and ANFIS followed by the detail presentation of the experimental modal analysis for natural frequencies extraction.

GA 학습 방법 기반 동적 신경 회로망을 이용한 비선형 시스템의 간접 적응 제어 (Indirect adaptive control of nonlinear systems using Genetic Algorithm based Dynamic neural network)

  • 조현섭;오명관
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2007년도 추계학술발표논문집
    • /
    • pp.81-84
    • /
    • 2007
  • In this thesis, we have designed the indirect adaptive controller using Dynamic Neural Units(DNU) for unknown nonlinear systems. Proposed indirect adaptive controller using Dynamic Neural Unit based upon the topology of a reverberating circuit in a neuronal pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our method is different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its training.

  • PDF

The Application of BP and RBF Neural Network Methods on Vehicle Detection in Aerial Imagery

  • Choi, Jae-Young;Jang, Hyoung-Jong;Yang, Young-Kyu
    • 대한원격탐사학회지
    • /
    • 제24권5호
    • /
    • pp.473-481
    • /
    • 2008
  • This paper presents an approach to Back-propagation and Radial Basis Function neural network method with various training set for automatic vehicle detection from aerial images. The initial extraction of candidate object is based on Mean-shift algorithm with symmetric property of a vehicle structure. By fusing the density and the symmetry, the method can remove the ambiguous objects and reduce the cost of processing in the next stage. To extract features from the detected object, we describe the object as a log-polar shape histogram using edge strengths of object and represent the orientation and distance from its center. The spatial histogram is used for calculating the momentum of object and compensating the direction of object. BPNN and RBFNN are applied to verify the object as a vehicle using a variety of non-car training sets. The proposed algorithm shows the results which are according to the training data. By comparing the training sets, advantages and disadvantages of them have been discussed.

한국형 양극성 장애 약물치료 알고리듬 2018 : 소아/청소년 (Korean Medication Algorithm for Bipolar Disorder 2018 : Children and Adolescents)

  • 심세훈;박원명;윤보현;전덕인;서정석;김원;이정구;우영섭;정종현;김문두;손인기;송후림;민경준
    • 우울조울병
    • /
    • 제16권3호
    • /
    • pp.109-122
    • /
    • 2018
  • Objectives : The objective of this study was to revise the Korean Medication Algorithm Project for Bipolar Disorder (KMAP-BP) 2014: Children and Adolescents. Methods : We performed the survey, using a questionnaire comprising 22 questions according to each situation, in children and adolescents with bipolar disorder. Results : First-line pharmacotherapeutic strategies for manic episode in children with bipolar disorder were a combination of mood stabilizer (MS) and an atypical antipsychotics (AAP), monotherapy with an AAP, risperidone, and aripiprazole. Aripiprazole was selected as first-line medication for depressive episode in children with bipolar disorder, and aripiprazole, and risperidone were selected as first-line at high-risk children. First-line pharmacotherapeutic strategies for manic episode in adolescents were a combination of MS and an AAP, monotherapy with an AAP valproate, lithium, risperidone (Treatment of Choice, TOC), aripiprazole, and quetiapine. First-line pharmacotherapeutic strategies for depressive episode in adolescents, were a combination of an atypical antipsychotics and lamotrigine, valproate, aripiprazole (TOC), risperidone, and quetiapine. For depressive episodes in adolescents at high risk for bipolar disorder, valproate, aripiprazole (TOC), and risperidone were selected as first-line medication. Conclusion : We expect that the present KMAP-BP 2018-children and adolescents, is useful for clinicians to treat children and adolescents with bipolar disorder.