한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
/
pp.491-494
/
2006
Kalman filtering (KF) is hard to be applied to the SINS (Strap-down Inertial Navigation System)/RDSS (Radio Determination Satellite Service) integrated navigation system directly because the time delay of RDSS positioning in active mode is random. BP (Back-Propagation) Neuron computing as a powerful technology of Artificial Neural Network (ANN), is appropriate to solve nonlinear problems such as the random time delay of RDSS without prior knowledge about the mathematical process involved. The new algorithm betakes a BP neural network (BPNN) and velocity feedback to aid KF in order to overcome the time delay of RDSS positioning. Once the BP neural network was trained and converged, the new approach will work well for SINS/RDSS integrated navigation. Dynamic vehicle experiments were performed to evaluate the performance of the system. The experiment results demonstrate that the horizontal positioning accuracy of the new approach is 40.62 m (1 ${\sigma}$), which is better than velocity-feedback-based KF. The experimental results also show that the horizontal positioning error of the navigation system is almost linear to the positioning interval of RDSS within 5 minutes. The approach and its anti-jamming analysis will be helpful to the applications of SINS/RDSS integrated systems.
본 연구에서는 낙동강 진동지점에서 일유출량을 예측하기 위하여 신경망모형이 제시되었다. 신경망모형의 구조는 CASE 1(5-5-1)과 CASE 2(5-5-5-1)로 구성하였으며, 은닉층의 수에 따라 두 가지의 모형으로 분류하였다. 각 신경망모형은 광역최소점과 훈련임계치에 수렴하는데 기존의 역전파훈련 알고리즘(BP) 보다 뛰어난 Fletcher-Reeves 공액구배 역전파훈련 알고리즘(FR-CGBP)과 축적된 공액구배 역전파훈련 알고리즘(SCGBP)을 이용하였다. 그리고 모형의 훈련과 검증을 위하여 이용된 자료는 풍수년, 평수년, 갈수년 풍수년+평수년, 풍수년+갈수년, 평수년+갈수년 및 풍수년+평수년+갈수년으로 구분하여 구성하였다. 모형의 훈련과정에서 각 자료를 이용하여 최적 연결강도와 편차가 결정되어 졌으며, 동시에 일유출량이 계산되어졌다. 예측오차의 통계분석을 통하여 풍수년+갈수년의 자료를 제외하고는 훈련결과가 양호한 것으로 나타났다. 모형의 검증에는 모형의 훈련을 통해 산정된 CASE 1 의 SCGBP 알고리즘의 연결강도와 편차를 이용하였으며, 검증의 결과는 훈련결과처럼 만족스러운 것으로 분석되었다. 또한 본 연구에서 선정한 신경망모형과 비교검토하기 위하여 다중회귀분석모형을 적용하여 일유출량을 예측하였으며, 그 결과 신경망모형이 다소 우수한 결과를 나타내는 것으로 분석되었다. 이와 같이 신경망모형은 조직적인 접근법, 매개변수의 감소 및 모델을 개발하는데 소모되는 시간을 줄일수 있는 장점이 있다.
과거에 설계자는 주로 과거의 경험과 설계 공간에 대한 산업 표준 임계값에 대한 참조에 의존했습니다. 이러한 설계는 종종 사용자의 요구를 충족하지 않는 공간을 초래합니다. 공간설계를 위한 BP신경망 알고리즘을 구축해 설계 매개변수를 생성하는 과정과 방법을 조사하는 것이 목적이다. 그런 관점에서. 본 논문은 공간 내 복잡한 욕구가 많은 유치원을 연구 대상으로 삼고 있으며, 기계학습의 BP신경망 알고리즘을 통해 환경행동변수와 공간설계변수의 상관관계를 각인하고 있다. 공간 설계 매개변수를 생성하는 방법을 연구합니다. 미래에는 특정 환경행동영향요소를 대체하여 해당 공간설계 매개변수를 도출할 수 있어 보다 광범위한 시나리오에 적용할 수 있고 설계자의 효율성을 높일 수 있다.
In this study, we tried to investigate that the advantages of SOM(Self Organizing Map) algorithm such as data accumulation ability and the degradation trend trace ability would be adaptable to the analysis of partial discharge pattern recognition. For the purpose, we analyzed partial discharge data obtained from the typical artificial defects in GIS and XLPE power cable system through SOM algorithm. As a result, partial discharge pattern recognition could be well carried out with an acceptable error by use of Kohonen map in SOM algorithm. Also, it was clarified that the additional data could be accumulated during the operation of the algorithm. Especially, we found out that the data accumulation ability of Kohonen map could make it possible to suggest new patterns, which is impossible through the conventional BP(Back Propagation) algorithm. In addition, it is confirmed that the degradation trend could be easily traced in accordance with the degradation process. Therefore, it is expected to improve on-site applicability and to trace real-time degradation trends using SOM algorithm in the partial discharge pattern recognition
Journal of the Korean Data and Information Science Society
/
제9권2호
/
pp.345-355
/
1998
다층전방향 신경망을 학습시키기 위해 역전파 알고리즘이 널리 사용되고 있으나 이 알고리즘은 긴 훈련시간, 극소점 문제, 이상치에 민감하다는 단점을 가지고 있다. 한편 실제문제에서는 많은 경우에 자료에 과대오차와 이상치가 포함되게 된다. 따라서 과대 오차에 민감하지 않고, 이상치의 영향을 최소화시키는 로버스트 역전파 알고리즘의 필요성이 대두되었다. 본 논문에서는 기존의 두종류의 로버스트 역전파 알고리즘을 이론적으로 비교하고 비선형 회귀 함수추정과 문자인식과 같은 패턴인식 문제에 적용하여 실험결과를 분석한다. 그리고 향후 연구과제로 신경망 학습을 위해 베이지안 기법의 사용을 제안한다.
본 논문에서는 이산 시간 신경망 제어 시스템의 안정도에 대한 해석을 하도록 한다. 우선 리아프노프의 직접법을 이용하여 신경망제어기를 포함하고 있는 시스템의 안정조건을 체계적으로 유도하고 이 유도된 안정조건을 반영하여 수정된 역전파 알고리즘을 제안한다. 이 수정된 역전파 알고리즘은 유도된 신경망 제어기 시스템의 안정조건을 반영한 학습 규칙이고 따라서 이를 이용하여 학습된 신경망 제어기의 경우 안정성을 보장하게 된다. 끝으로 컴퓨터 모의 실험에서는 제안한 신경망 제어 시스템의 안정조건과 이를 반영한 수정 역전파 알고리즘을 통하여 주어진 플랜트를 학습 제어하도록 한다.
본 연구는 GIS 진단신뢰성 향상기술 개발을 목적으로, 16개의 인위적 결함을 이용하여 부분방전 신호를 발생시키고 검출하여 그 패턴인식 확률을 높이기 위하여 신경망에 Genetic Algorithm (GA) 을 적용하였다. 이를 위하여 다음과 같은 5가지 서로 다른 신경망 모델을 선택하였다: Back Propagation (BP), Jordan-Elman Network (JEN), Principal Component Analysis (PCA), Self-Organizing Feature Map (SOFM) 및 Support Vector Machine (SVM). 이와 같이 선택된 모델에 동일한 데이터를 학습 시키고 패턴인식 확률을 비교 및 분석하였다. 실험 결과에 의하면, BP의 인식률이 가장 높고 다음으로 JEN의 인식률이 높이 나타났으며, 후자의 경우 모든 결함에 대하여 정확한 패턴분류를 한 반면에 전자의 경우 1.8% 의 분류 오차가 발생하였다. 따라서 인식률이 높은 신경망이 더 정확한 패턴분류를 보장하지 못한다는 실험적 결과를 고려 할 때, 인식률이 높은 두 개의 모델을 선정하여 각각의 출력에 일정한 가중치를 주고 합산하여 새로운 출력을 얻는 방법을 제안한다.
휘발성유기 화합물(Vo1ati1e Organic Compounds : VOCs)은 탄화수소 화합물을 총칭한다. 이는 오존 및 광화학 스모그의 원인물질일 뿐 아니라 인체에는 암을 유발시키는 유해 물질이다. 또한 대기 중 악취 물질로서 환경 및 건강에 영향을 초래하는 유해성 물질이다. 본 논문은 대기 중에 포함된 암을 유발시키는 유해성 물질인 BTX(Benzene, Toluene, Xylene)의 존재 유무와 농도 측정에 대해서 연구하였다. 다종의 가스센서를 어레이하여 BTX 가스를 측정하고 인공신경망(Artificial Neural Network : ANN)의 역전파(Back propagation : BP) 알고리즘으로 시뮬레이션과 실험을 통해 농도를 추론하였다. ANN모듈은 기준 데이터를 시뮬레이션을 통해 학습시키고, 가스를 주입하여 실험 할 때 학습된 델타 모델에 근거하여 추론을 할 수 있는 추론 알고리즘 모듈이다. 이 모듈은 기준데이터를 MATLAB 코드로 시뮬레이션을 하여 생성된 parameter를 가지고 수행했으며, 시뮬레이션 결과를 실험을 통해 비교 테스트하여 검증하였다.
In order to develop reliable on-site partial discharge(PD) pattern recognition algorithm, the fuzzy neural network based on fuzzy set(FNN) and the polynomial network pattern classifier based on fuzzy Inference(PNC) were investigated and designed. Using PD data measured from laboratory defect models, these algorithms were learned and tested. Considering on-site situation where it is not easy to obtain voltage phases in PRPDA(Phase Resolved Partial Discharge Analysis), the measured PD data were artificially changed with shifted voltage phases for the test of the proposed algorithms. As input vectors of the algorithms, PRPD data themselves were adopted instead of using statistical parameters such as skewness and kurtotis, to improve uncertainty of statistical parameters, even though the number of input vectors were considerably increased. Also, results of the proposed neuro-fuzzy algorithms were compared with that of conventional BP-NN(Back Propagation Neural Networks) algorithm using the same data. The FNN and PNC algorithms proposed in this study were appeared to have better performance than BP-NN algorithm.
The objective of this study is to design a multi-layer neural network which controls the position of excavator's attachment. In this paper, a dynamic controller has been developed based on an error back-propagation(BP) neural network. Since the neural network can model an arbitrary nonlinear mapping, it was used as a commanded feedforward input generator. A PD feedback controller is used in parallel with the feedforward neural network to train the system. The neural network was trained by the current state of the excavator as well as the PD feedback error. By using the BP network as a feedforward controller, no a priori knowledge on system dynamics is need. Computer simulation results demonstrate such powerful characteristics of the proposed controller as adaptation to changing environment, robustness to disturbancen and performance improvement with the on-line learning in the position control of excavator attachment.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.