• 제목/요약/키워드: BP(Back-Propagation)

검색결과 152건 처리시간 0.024초

A Neural Network Aided Kalman Filtering Approach for SINS/RDSS Integrated Navigation

  • Xiao-Feng, He;Xiao-Ping, Hu;Liang-Qing, Lu;Kang-Hua, Tang
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.491-494
    • /
    • 2006
  • Kalman filtering (KF) is hard to be applied to the SINS (Strap-down Inertial Navigation System)/RDSS (Radio Determination Satellite Service) integrated navigation system directly because the time delay of RDSS positioning in active mode is random. BP (Back-Propagation) Neuron computing as a powerful technology of Artificial Neural Network (ANN), is appropriate to solve nonlinear problems such as the random time delay of RDSS without prior knowledge about the mathematical process involved. The new algorithm betakes a BP neural network (BPNN) and velocity feedback to aid KF in order to overcome the time delay of RDSS positioning. Once the BP neural network was trained and converged, the new approach will work well for SINS/RDSS integrated navigation. Dynamic vehicle experiments were performed to evaluate the performance of the system. The experiment results demonstrate that the horizontal positioning accuracy of the new approach is 40.62 m (1 ${\sigma}$), which is better than velocity-feedback-based KF. The experimental results also show that the horizontal positioning error of the navigation system is almost linear to the positioning interval of RDSS within 5 minutes. The approach and its anti-jamming analysis will be helpful to the applications of SINS/RDSS integrated systems.

  • PDF

다층신경망모형에 의한 일 유출량의 예측에 관한 연구 (A Study on the Forecasting of Daily Streamflow using the Multilayer Neural Networks Model)

  • 김성원
    • 한국수자원학회논문집
    • /
    • 제33권5호
    • /
    • pp.537-550
    • /
    • 2000
  • 본 연구에서는 낙동강 진동지점에서 일유출량을 예측하기 위하여 신경망모형이 제시되었다. 신경망모형의 구조는 CASE 1(5-5-1)과 CASE 2(5-5-5-1)로 구성하였으며, 은닉층의 수에 따라 두 가지의 모형으로 분류하였다. 각 신경망모형은 광역최소점과 훈련임계치에 수렴하는데 기존의 역전파훈련 알고리즘(BP) 보다 뛰어난 Fletcher-Reeves 공액구배 역전파훈련 알고리즘(FR-CGBP)과 축적된 공액구배 역전파훈련 알고리즘(SCGBP)을 이용하였다. 그리고 모형의 훈련과 검증을 위하여 이용된 자료는 풍수년, 평수년, 갈수년 풍수년+평수년, 풍수년+갈수년, 평수년+갈수년 및 풍수년+평수년+갈수년으로 구분하여 구성하였다. 모형의 훈련과정에서 각 자료를 이용하여 최적 연결강도와 편차가 결정되어 졌으며, 동시에 일유출량이 계산되어졌다. 예측오차의 통계분석을 통하여 풍수년+갈수년의 자료를 제외하고는 훈련결과가 양호한 것으로 나타났다. 모형의 검증에는 모형의 훈련을 통해 산정된 CASE 1 의 SCGBP 알고리즘의 연결강도와 편차를 이용하였으며, 검증의 결과는 훈련결과처럼 만족스러운 것으로 분석되었다. 또한 본 연구에서 선정한 신경망모형과 비교검토하기 위하여 다중회귀분석모형을 적용하여 일유출량을 예측하였으며, 그 결과 신경망모형이 다소 우수한 결과를 나타내는 것으로 분석되었다. 이와 같이 신경망모형은 조직적인 접근법, 매개변수의 감소 및 모델을 개발하는데 소모되는 시간을 줄일수 있는 장점이 있다.

  • PDF

BP 신경 망 기반 유치원 공간 설계 (Kindergarten space design based on BP (back propagation) neural network)

  • 랴오펑청;반영환
    • 한국융합학회논문지
    • /
    • 제12권9호
    • /
    • pp.1-10
    • /
    • 2021
  • 과거에 설계자는 주로 과거의 경험과 설계 공간에 대한 산업 표준 임계값에 대한 참조에 의존했습니다. 이러한 설계는 종종 사용자의 요구를 충족하지 않는 공간을 초래합니다. 공간설계를 위한 BP신경망 알고리즘을 구축해 설계 매개변수를 생성하는 과정과 방법을 조사하는 것이 목적이다. 그런 관점에서. 본 논문은 공간 내 복잡한 욕구가 많은 유치원을 연구 대상으로 삼고 있으며, 기계학습의 BP신경망 알고리즘을 통해 환경행동변수와 공간설계변수의 상관관계를 각인하고 있다. 공간 설계 매개변수를 생성하는 방법을 연구합니다. 미래에는 특정 환경행동영향요소를 대체하여 해당 공간설계 매개변수를 도출할 수 있어 보다 광범위한 시나리오에 적용할 수 있고 설계자의 효율성을 높일 수 있다.

SOM 알고리즘을 이용한 부분방전 패턴인식에 대한 연구 (A Study on the Partial Discharge Pattern Recognition by Use of SOM Algorithm)

  • 김정태;이호근;임윤석;김지홍;구자윤
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권10호
    • /
    • pp.515-522
    • /
    • 2004
  • In this study, we tried to investigate that the advantages of SOM(Self Organizing Map) algorithm such as data accumulation ability and the degradation trend trace ability would be adaptable to the analysis of partial discharge pattern recognition. For the purpose, we analyzed partial discharge data obtained from the typical artificial defects in GIS and XLPE power cable system through SOM algorithm. As a result, partial discharge pattern recognition could be well carried out with an acceptable error by use of Kohonen map in SOM algorithm. Also, it was clarified that the additional data could be accumulated during the operation of the algorithm. Especially, we found out that the data accumulation ability of Kohonen map could make it possible to suggest new patterns, which is impossible through the conventional BP(Back Propagation) algorithm. In addition, it is confirmed that the degradation trend could be easily traced in accordance with the degradation process. Therefore, it is expected to improve on-site applicability and to trace real-time degradation trends using SOM algorithm in the partial discharge pattern recognition

로버스트 다층전방향 신경망을 이용한 패턴인식 (Pattern Recognition using Robust Feedforward Neural Networks)

  • 황창하;김상민
    • Journal of the Korean Data and Information Science Society
    • /
    • 제9권2호
    • /
    • pp.345-355
    • /
    • 1998
  • 다층전방향 신경망을 학습시키기 위해 역전파 알고리즘이 널리 사용되고 있으나 이 알고리즘은 긴 훈련시간, 극소점 문제, 이상치에 민감하다는 단점을 가지고 있다. 한편 실제문제에서는 많은 경우에 자료에 과대오차와 이상치가 포함되게 된다. 따라서 과대 오차에 민감하지 않고, 이상치의 영향을 최소화시키는 로버스트 역전파 알고리즘의 필요성이 대두되었다. 본 논문에서는 기존의 두종류의 로버스트 역전파 알고리즘을 이론적으로 비교하고 비선형 회귀 함수추정과 문자인식과 같은 패턴인식 문제에 적용하여 실험결과를 분석한다. 그리고 향후 연구과제로 신경망 학습을 위해 베이지안 기법의 사용을 제안한다.

  • PDF

신경망 제어 시스템의 안정도에 관한 연구 (A Study on the Stability of Neural Network Control Systems)

  • 김은태;이의진;김승우;박민용
    • 전자공학회논문지CI
    • /
    • 제37권1호
    • /
    • pp.21-31
    • /
    • 2000
  • 본 논문에서는 이산 시간 신경망 제어 시스템의 안정도에 대한 해석을 하도록 한다. 우선 리아프노프의 직접법을 이용하여 신경망제어기를 포함하고 있는 시스템의 안정조건을 체계적으로 유도하고 이 유도된 안정조건을 반영하여 수정된 역전파 알고리즘을 제안한다. 이 수정된 역전파 알고리즘은 유도된 신경망 제어기 시스템의 안정조건을 반영한 학습 규칙이고 따라서 이를 이용하여 학습된 신경망 제어기의 경우 안정성을 보장하게 된다. 끝으로 컴퓨터 모의 실험에서는 제안한 신경망 제어 시스템의 안정조건과 이를 반영한 수정 역전파 알고리즘을 통하여 주어진 플랜트를 학습 제어하도록 한다.

  • PDF

Neural Network Combination (NNC) 기법을 이용한 부분방전 패턴인식의 신뢰성 향상에 관한 연구 (A Study on the Reliability Improvement of Partial Discharge Pattern Recognition using Neural Network Combination (NNC) Method)

  • 김성일;정승용;구자윤;임윤석;구선근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.9-11
    • /
    • 2005
  • 본 연구는 GIS 진단신뢰성 향상기술 개발을 목적으로, 16개의 인위적 결함을 이용하여 부분방전 신호를 발생시키고 검출하여 그 패턴인식 확률을 높이기 위하여 신경망에 Genetic Algorithm (GA) 을 적용하였다. 이를 위하여 다음과 같은 5가지 서로 다른 신경망 모델을 선택하였다: Back Propagation (BP), Jordan-Elman Network (JEN), Principal Component Analysis (PCA), Self-Organizing Feature Map (SOFM) 및 Support Vector Machine (SVM). 이와 같이 선택된 모델에 동일한 데이터를 학습 시키고 패턴인식 확률을 비교 및 분석하였다. 실험 결과에 의하면, BP의 인식률이 가장 높고 다음으로 JEN의 인식률이 높이 나타났으며, 후자의 경우 모든 결함에 대하여 정확한 패턴분류를 한 반면에 전자의 경우 1.8% 의 분류 오차가 발생하였다. 따라서 인식률이 높은 신경망이 더 정확한 패턴분류를 보장하지 못한다는 실험적 결과를 고려 할 때, 인식률이 높은 두 개의 모델을 선정하여 각각의 출력에 일정한 가중치를 주고 합산하여 새로운 출력을 얻는 방법을 제안한다.

  • PDF

인공신경망을 이용한 BTX 농도 측정에 관한 연구 (The study to measure of the BTX concentration using ANN)

  • 정영창;김동진;홍철호;이장훈;권혁구
    • 한국산학기술학회논문지
    • /
    • 제5권1호
    • /
    • pp.1-6
    • /
    • 2004
  • 휘발성유기 화합물(Vo1ati1e Organic Compounds : VOCs)은 탄화수소 화합물을 총칭한다. 이는 오존 및 광화학 스모그의 원인물질일 뿐 아니라 인체에는 암을 유발시키는 유해 물질이다. 또한 대기 중 악취 물질로서 환경 및 건강에 영향을 초래하는 유해성 물질이다. 본 논문은 대기 중에 포함된 암을 유발시키는 유해성 물질인 BTX(Benzene, Toluene, Xylene)의 존재 유무와 농도 측정에 대해서 연구하였다. 다종의 가스센서를 어레이하여 BTX 가스를 측정하고 인공신경망(Artificial Neural Network : ANN)의 역전파(Back propagation : BP) 알고리즘으로 시뮬레이션과 실험을 통해 농도를 추론하였다. ANN모듈은 기준 데이터를 시뮬레이션을 통해 학습시키고, 가스를 주입하여 실험 할 때 학습된 델타 모델에 근거하여 추론을 할 수 있는 추론 알고리즘 모듈이다. 이 모듈은 기준데이터를 MATLAB 코드로 시뮬레이션을 하여 생성된 parameter를 가지고 수행했으며, 시뮬레이션 결과를 실험을 통해 비교 테스트하여 검증하였다.

  • PDF

Neuro-Fuzzy 기법을 이용한 부분방전 패턴인식에 대한 연구 (A Study on Partial Discharge Pattern Recognition Using Neuro-Fuzzy Techniques)

  • 박건준;김길성;오성권;최원;김정태
    • 전기학회논문지
    • /
    • 제57권12호
    • /
    • pp.2313-2321
    • /
    • 2008
  • In order to develop reliable on-site partial discharge(PD) pattern recognition algorithm, the fuzzy neural network based on fuzzy set(FNN) and the polynomial network pattern classifier based on fuzzy Inference(PNC) were investigated and designed. Using PD data measured from laboratory defect models, these algorithms were learned and tested. Considering on-site situation where it is not easy to obtain voltage phases in PRPDA(Phase Resolved Partial Discharge Analysis), the measured PD data were artificially changed with shifted voltage phases for the test of the proposed algorithms. As input vectors of the algorithms, PRPD data themselves were adopted instead of using statistical parameters such as skewness and kurtotis, to improve uncertainty of statistical parameters, even though the number of input vectors were considerably increased. Also, results of the proposed neuro-fuzzy algorithms were compared with that of conventional BP-NN(Back Propagation Neural Networks) algorithm using the same data. The FNN and PNC algorithms proposed in this study were appeared to have better performance than BP-NN algorithm.

다층 신경 회로망을 이용한 굴삭기의 위치 제어 (The Position Control of Excavator's Attachment using Multi-layer Neural Network)

  • 서삼준;권대익;서호준;박귀태;김동식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.705-709
    • /
    • 1995
  • The objective of this study is to design a multi-layer neural network which controls the position of excavator's attachment. In this paper, a dynamic controller has been developed based on an error back-propagation(BP) neural network. Since the neural network can model an arbitrary nonlinear mapping, it was used as a commanded feedforward input generator. A PD feedback controller is used in parallel with the feedforward neural network to train the system. The neural network was trained by the current state of the excavator as well as the PD feedback error. By using the BP network as a feedforward controller, no a priori knowledge on system dynamics is need. Computer simulation results demonstrate such powerful characteristics of the proposed controller as adaptation to changing environment, robustness to disturbancen and performance improvement with the on-line learning in the position control of excavator attachment.

  • PDF