• 제목/요약/키워드: BOOST

검색결과 2,897건 처리시간 0.025초

Buck-Boost Interleaved Inverter Configuration for Multiple-Load Induction Cooking Application

  • Sharath Kumar, P.;Vishwanathan, N.;Bhagwan, K. Murthy
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.271-279
    • /
    • 2015
  • Induction cooking application with multiple loads need high power inverters and appropriate control techniques. This paper proposes an inverter configuration with buck-boost converter for multiple load induction cooking application with independent control of each load. It uses one half-bridge for each load. For a given dc supply of $V_{DC}$, one more $V_{DC}$ is derived using buck-boost converter giving $2V_{DC}$ as the input to each half-bridge inverter. Series resonant loads are connected between the centre point of $2V_{DC}$ and each half-bridge. The output voltage across each load is like that of a full-bridge inverter. In the proposed configuration, half of the output power is supplied to each load directly from the source and remaining half of the output power is supplied to each load through buck-boost converter. With buck-boost converter, each half-bridge inverter output power is increased to a full-bridge inverter output power level. Each half-bridge is operated with constant and same switching frequency with asymmetrical duty cycle (ADC) control technique. By ADC, output power of each load is independently controlled. This configuration also offers reduced component count. The proposed inverter configuration is simulated and experimentally verified with two loads. Simulation and experimental results are in good agreement. This configuration can be extended to multiple loads.

연료전지 응용을 위한 높은 승압비와 낮은 전류리플을 갖는 무변압기형 부스트 컨버터 (A Transformer-less Boost Converter with High Gain and Low Current Ripple for Fuel Cell Application)

  • 양진영;박찬기;최세완;남석우
    • 전력전자학회논문지
    • /
    • 제13권2호
    • /
    • pp.79-87
    • /
    • 2008
  • 연료전지의 낮고 변동폭이 큰 전압을 안정된 높은 전압으로 승압시키기 위하여 부스트 컨버터가 사용되고 있다. 전기적인 절연이 요구되지 않는 응용에서는 손실, 가격 및 부피 상승의 원인이 되는 고주파 변압기가 없는 무변압기형의 부스트 컨버터가 장점을 갖는다. 본 논문에서는 새로운 무변압기형 부스트 컨버터를 제안한다. 제안한 컨버터는 $6{\sim}8$배의 실제 사용가능 한 승압비를 가지며 입 출력 전류 리플이 매우 작아 연료전지 응용에 적합하다. 이에 대한 이론적 해석과 시뮬레이션 및 실험파형을 통해 타당성을 검증하였다.

패시브 보조 공진 스너버를 이용한 소프트 스위칭 승압형 DC-DC 컨버터의 토폴로지 (The Topology of Soft Switching Boost Type DC-DC Converter using a Passive Auxiliary Resonant Snubber)

  • 성치호;박한석
    • 전기학회논문지P
    • /
    • 제64권3호
    • /
    • pp.146-152
    • /
    • 2015
  • In this paper, we propose a boost DC-DC converter using a modification of the passive auxiliary resonant snubber circuit with a DC-DC converter in a typical active auxiliary resonant snubber-bridge inverter. The proposed boost DC-DC converter is small compared to the DC-DC converter according to the soft-switching scheme that requires a general auxiliary switch by realizing the soft switching operation as a DC-DC converter which does not require an auxiliary switch. It is light-weight, switch the turn-on and turn-off switching loss at the time of the superposition of the voltage and current is extremely small, so small. And the reduction of the surge voltage and current of the switch. In addition, the proposed boost DC-DC converter has a high efficiency over a wide load characteristics change area than conventional hard switching PWM boost converter using an RC snubber loss.

Efficiency Improvement of Synchronous Boost Converter with Dead Time Control for Fuel Cell-Battery Hybrid System

  • Kim, Do-Yun;Won, Il-Kuen;Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.1891-1901
    • /
    • 2017
  • In this paper, optimal control of the fuel cell and design of a high-efficiency power converter is implemented to build a high-priced fuel cell system with minimum capacity. Conventional power converter devices use a non-isolated boost converter for high efficiency while the battery is charged, and reduce its conduction loss by using MOSFETs instead of diodes. However, the efficiency of the boost converter decreases, since overshoot occurs because there is a moment when the body diode of the MOSFET is conducted during the dead time and huge loss occurs when the dead time for the maximum-power-flowing state is used in the low-power-flowing state. The method proposed in this paper is to adjust the dead time of boost and rectifier switches by predicting the power flow to meet the maximum efficiency in every load condition. After analyzing parasite components, the stability and efficiency of the high-efficiency boost converter is improved by predictive compensation of the delay component of each part, and it is proven by simulation and experience. The variation in switching delay times of each switch of the full-bridge converter is compensated by falling time compensation, a control method of PWM, and it is also proven by simulation and experience.

Cascaded Buck-Boost 컨버터를 이용한 태양광 모듈 집적형 저전압 배터리 충전 장치 개발 (Development of PV Module Integrated Type Low Voltage Battery Charger using Cascaded Buck-Boost Converter)

  • 김동희;이희서;이영달;이은주;이태원;이병국
    • 전력전자학회논문지
    • /
    • 제17권6호
    • /
    • pp.471-477
    • /
    • 2012
  • In this paper, in order to use module integrated converter using cascaded buck-boost converter for a low battery charger in stand-alone system, a charging algorithm which considers photovoltaic and battery status and PWM controllers which are changed according to charging modes are proposed. The proposed algorithm consists of constant current mode, constant voltage mode and maximum power point tracking mode which enables the battery to charge with maximum power rate. This paper also presents design of cascaded buck-boost converter that is the photovoltaic charger system. A 150W prototype system is built according to verify proposed the charger system and the algorithm.

단상 On-line UPS를 이용하여 역율을 개선하는 BOOST 컨버터의 구현 (Implementation of BOOST Converter with Power Factor Correction(PFC) using a Single-phase On-line UPS)

  • 한완옥;김태웅
    • 전자공학회논문지T
    • /
    • 제36T권4호
    • /
    • pp.47-52
    • /
    • 1999
  • 본 논문은 Battery-전압 BOOST 컨버터를 2 중 기능의 역율 개선된 (PFC) 정류기로 대치시킨 새로운 구조의 On-line UPS를 제시함으로써 복잡한 전력단을 간단화 할 수 있는 방법을 제시한다. 또한 종래의 역율 개선 회로(PFC)에서는 직류 부하단의 전압 (${V_o}$) 의 리플에 대한 영향으로 인하여 고주파 스위칭 Converter에 적용하기 어려웠으나 본 논문에서는 개선된 On-line UPS를 사용하여 역율 개선기능과 승압 기능을 하나의 BOOST 컨버터로 통합함으로써 직류 부하단 전압의 리플을 최소화시켜서 고주파 스위칭 효율을 높이고, 시스템 설계 및 개발 경비를 감소시킬 수 있다. 이와 같이 개선된 UPS를 이용한 BOOST 컨버터의 가능성과 저가의 높은 전력 밀도를 실험적인 방법으로 검증하였다.

  • PDF

다중 클래스 아다부스트 알고리즘 (Multiclass-based AdaBoost Algorithm)

  • 김태현;박동철
    • 전자공학회논문지CI
    • /
    • 제48권1호
    • /
    • pp.44-50
    • /
    • 2011
  • 본 논문은 다중 클래스 데이터의 효율적 분류를 위한 새로운 아다부스트 알고리즘을 제안한다. 기존의 아다부스트 알고리즘은 기본적으로 이진 분류기이므로 다중 클래스 데이터 분류의 적용에는 매우 제한적이었다. 이를 극복하기 위하여 제안된 알고리즘은 여러 개의 이진 분류기 대신 하나의 다중 분류기를 약 분류기로 사용함으로써 학습시간을 단축시키고 안정적인 정확도를 얻을 수 있는 장점이 있다. 제안하는 알고리즘의 성능을 평가하기 위하여 Caltech 영상 데이터베이스에서 4가지클래스의 영상 데이터를 총 800개 수집하여 영상 분류 실험을 진행하였다. 실험의 결과 제안된 다중 클래스 아다부스트 알고리즘은 Adaboost.M2 알고리즘에 비해 분류정확도는 대등한 결과를 얻었지만, 학습시간을 학습단계에 따라 83.1%까지 감소시킬 수 있었다.

배압회로를 이용한 고승압 컨버터 (High Boost Converter Using Voltage Multiplier)

  • 백주원;김종현;류명효;유동욱;김종수
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권8호
    • /
    • pp.416-422
    • /
    • 2006
  • With the increasing demand for renewable energy, distributed power included in fuel cells have been studied and developed as a future energy source. For this system, a power conversion circuit is necessary to interface the generated power to the utility. In many cases, a high step-up dc/dc converter is needed to boost low input voltage to high voltage output. Conventional methods using cascade dc/dc converters cause extra complexity and higher cost. The conventional topologies to get high output voltage use flyback dc/dc converters. They have the leakage components that cause stress and loss of energy that results in low efficiency. This paper presents a high boost converter with a voltage multiplier and a coupled inductor. The secondary voltage of the coupled inductor is rectified using a voltage multiplier and series-connected with the boost voltage of primary voltage of the coupled inductor. Therefore, high boost voltage is obtained with low duty cycle. Theoretical analysis and experimental results verify the proposed solutions using a 300W prototype.

LabVIEW-based Remote Laboratory Experiments for a Multi-mode Single-leg Converter

  • Bayhan, Sertac
    • Journal of Power Electronics
    • /
    • 제14권5호
    • /
    • pp.1069-1078
    • /
    • 2014
  • This study presents the design and implementation of a web-based remote laboratory for a multi-mode single-leg power converter, which is a topic in advanced power electronics course. The proposed laboratory includes an experimental test rig with a multi-mode single-leg power converter and its driver circuits, a measurement board, a control platform, and a LabVIEW-based user interface program that is operated in the server computer. Given that the proposed web-based remote laboratory is based on client/server architecture, the experimental test rig can be controlled by a client computer with Internet connection and a standard web browser. Although the multi-mode single-leg power converter can work at four different modes (main boost, buck-boost, boost-boost, and battery boost modes), only the buck-boost mode is used in the experiment because of page limit. Users can choose the control structure, control parameters, and reference values, as well as obtain graphical results from the user interface software. Consequently, the feedbacks received from students who conducted remote laboratory studies indicate that the proposed laboratory is a useful tool for both remote and traditional education.

ZC-ZVS 엑티브 스너버를 이용한 1.2[kW]급 고역률 승압형 정류기 (1.2[kW] Glass HPF Boost Type Rectifier using ZC-ZVS Active Snubber)

  • 박진민;문상필;김칠용;김영문;권순걸;서기영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.1238-1240
    • /
    • 2003
  • A new soft switching technique that improves performance of the high power factor boost rectifier by reducing switching losses is introduced. The losses are reduced by air active snubber which consists of an inductor, a capacitor a rectifier, and an auxiliary switch. Since the boost switch turns off with zero current, this technique is well suited for implementations with insulated gate bipolar transistors. The reverse recovery related losses of the rectifier are also reduced by the snubber inductor which is connected in series with the boost switch and the boost rectifier. In addition, the auxiliary switch operates with zero voltage switching. A complete design procedure and extensive performance evaluation of the proposed active snubber using a 1.2[kW] high power factor boost rectifier operating from a 90 [$V_{rms}$] input are also presented.

  • PDF