• Title/Summary/Keyword: BOLD

Search Result 300, Processing Time 0.022 seconds

Identification of Dammarane-type Triterpenoid Saponins from the Root of Panax ginseng

  • Lee, Dong Gu;Lee, Jaemin;Yang, Sanghoon;Kim, Kyung-Tack;Lee, Sanghyun
    • Natural Product Sciences
    • /
    • v.21 no.2
    • /
    • pp.111-121
    • /
    • 2015
  • The root of Panax ginseng, is a Korea traditional medicine, which is used in both raw and processed forms due to their different pharmacological activities. As part of a continued chemical investigation of ginseng, the focus of this research is on the isolation and identification of compounds from Panax ginseng root by open column chromatography, medium pressure liquid chromatography, semi-preparative-high performance liquid chromatography, Fast atom bombardment mass spectrometric, and nuclear magnetic resonance. Dammarane-type triterpenoid saponins were isolated from Panax ginseng root by open column chromatography, medium pressure liquid chromatography, and semi-preparative-high performance liquid chromatography. Their structures were identified as protopanaxadiol ginsenosides [gypenoside-V (1), ginsenosides-Rb1 (2), -Rb2 (3), -Rb3 (4), -Rc (5), and -Rd (6)], protopanaxatriol ginsenosides [20(S)-notoginsenoside-R2 (7), notoginsenoside-Rt (8), 20(S)-O-glucoginsenoside-Rf (9), 6-O-[$\alpha$-L-rhamnopyranosyl(1$\rightarrow$2-$\beta$-D-glucopyranosyl]-20-O-$\beta$-D-glucopyranosyl-$3\beta$,$12\beta$, 20(S)-dihydroxy-dammar-25-en-24-one (10), majoroside-F6 (11), pseudoginsenoside-Rt3 (12), ginsenosides-Re (13), -Re5 (14), -Rf (15), -Rg1 (16), -Rg2 (17), and -Rh1 (18), and vinaginsenoside-R15 (19)], and oleanene ginsenosides [calenduloside-B (20) and ginsenoside-Ro (21)] through the interpretation of spectroscopic analysis. The configuration of the sugar linkages in each saponin was established on the basic of chemical and spectroscopic data. Among them, compounds 1, 8, 10, 11, 12, 19, and 20 were isolated for the first time from P. ginseng root.

Soluble Epoxide Hydrolase Inhibitory Activity from Euphorbia supina Rafin

  • Luyen, Bui Thi Thuy;Thao, Nguyen Phuong;Tai, Bui Huu;Dat, Le Duc;Kim, Ji Eun;Yang, Seo Young;Kwon, Se Uk;Lee, Young Mi;Kim, Young Ho
    • Natural Product Sciences
    • /
    • v.21 no.3
    • /
    • pp.176-184
    • /
    • 2015
  • In our search for natural soluble epoxide hydrolase (sEH) inhibitors from plants, an extract of the dried whole plants of Euphorbia supina Rafin was found to significantly inhibit sEH activity in vitro. Phytochemical investigation of E. supina resulted in isolation of 17 compounds (1 - 17), including triterpenes (1 - 4), phenolic compounds (5 - 8), and flavonoid derivatives (9 - 17). The structures of the isolated compounds were established mainly by extensive analysis of the 1D and 2D NMR, and MS data. All of the isolated compounds were evaluated for their sEH inhibitory activity. Among the isolated phenolic compounds, 8 was identified as a significant inhibitor of sEH, with an IC50 value of 15.4 ± 1.3 μM. Additionally, a kinetic analysis of isolated compounds (2, 5, 8 - 11, 13, and 17) indicated that the inhibitory effects of flavonoid derivatives 10 and 11 were of mixed-type, with inhibitory constants (Ki) ranging from 3.6 ± 0.8 to 21.8 ± 1.0 μM, whereas compounds 2, 5, 8, 9, 13, and 17 were non-competitive inhibitors with inhibition Ki values ranging from 3.3 ± 0.2 to 39.5 ± 0.0 μM.

Chemical Constituents from the Aerial Parts of Abutilon theophrasti (어저귀 지상부의 화학성분)

  • Jin, Qinglong;Ko, Hae Ju;Chang, Young-Su;Woo, Eun-Rhan
    • Korean Journal of Pharmacognosy
    • /
    • v.46 no.2
    • /
    • pp.93-98
    • /
    • 2015
  • Eleven compounds, lupenone (1), lupeol (2), stigmasterol (3), β-sitosterol (4), 24-methylene-3,4-seco-cycloart-4(28)-en-3-oic acid (5), 24-methylene-3,4-seco-cycloart-4(28)-en-3-methyl ester (6), (+)-(1S,4R)-7-hydroxycalamenene (7), hibicuslide C (8), isopropyl-${\beta}$-D-glucopyranoside (9), syringaresinol-4'-O-${\beta}$-D-glucoside (10), and rutin (11) were isolated from the aerial parts of Abutilon theophrasti. The chemical structures of compounds 1-11 were determined by the basis of physicochemical properties and spectroscopic methods such as 1D and 2D NMR. These compounds were isolated from this plant for the first time. In addition, compounds 6 and 9 were obtained for the first time as natural products not as synthetics.

Phenolic Compounds and Triterpenes from the Barks of Diospyros burmanica

  • Choi, Janggyoo;Cho, Jae Youl;Kim, Young-Dong;Htwe, Khin Myo;Lee, Woo-Shin;Lee, Jun Chul;Kim, Jinwoong;Yoon, Kee Dong
    • Natural Product Sciences
    • /
    • v.21 no.2
    • /
    • pp.76-81
    • /
    • 2015
  • Diospyros burmanica Kurz. is an evergreen deciduous tree distributed in Mandalay of Myanmar, which belongs to the family of Ebenaceae. In Myanmar, it has been used to treat diarrhea, diabetes, diabetes and also as lumbers. In this study, seven flavonoids (1 - 7), a phenolic compound (8), and five triterpenes (9 - 13) were isolated from the barks of D. burmanica and their chemical structures were elucidated. Isolates were identified to be (+)-catechin (1), (+)-catechin 3-O-$\alpha$-L-rhamnopyranoside (2), (+)-catechin 3-O-gallate (3), (-)-epicatechin (4), (-)-epicatechin 3-O-gallate (5), (+)-afzelechin 3-O-$\alpha$-L-rhamnopyranoside (6), (+)-2,3-trans-dihydrokaempferol 3-O-$\alpha$-L-rhamnopyranoside (7), methyl gallate (8), lupeol (9), methyl lup-20(29)-en-3-on-28-oate (10), $\beta$-amyrin (11), $\alpha$-amyrin (12), $3\beta$-hydroxy-D:B-friedo-olean-5-ene (13) through MS, 1H NMR and 13C NMR spectroscopic evidences.

Antibiotic Components from the Rhizomes of Curcuma zedoaria

  • Jeong, Choon Sik;Shim, Sang Hee
    • Natural Product Sciences
    • /
    • v.21 no.3
    • /
    • pp.147-149
    • /
    • 2015
  • Two terpenoids, including one uniquely aromatized one (1), were isolated from CH2Cl2-soluble fraction of MeOH extracts of Curcuma zedoaria. They were identified to be a sesquiterpene ketolactone (1) and orobanone (2), respectively on the basis of their NMR data. The structure of compound 1 was confirmed by X-ray chrystallography and the reported NMR assignments for 1 were revised in this study. Antibiotic activities for compounds 1 and 2 were evaluated using disk diffusion assay. Compound 1 showed potent antibacterial activities against Listeria monocytogenes and Staphylococcus pseudointermedius while compound 2 was active against Bacillus cereus.

Chemical Constituents from Leaves of Acanthopanax henryi (II)

  • Li, Zhi;Li, Xiao Jun;Kwon, Ok Kyoung;Wang, Xiang;Zou, Qin Peng;Liu, Xiang Qian;Lee, Hyeong kyu
    • Natural Product Sciences
    • /
    • v.21 no.3
    • /
    • pp.196-204
    • /
    • 2015
  • Nineteen compounds, including one organic acid (1), one anthraquinone (2), one amide (3), and sixteen triterpenoid saponins (4 - 19) were isolated from the leaves of Acanthopanax henryi (Oliv.) Harms (Araliaceae). Their structures were determined on the basis of physicochemical properties and spectral analyses (HR-MS and NMR). Among them, compounds 2, 3, 7, 12 and 19 were new within Araliaceae. Compounds 4, 5, 9 - 11, 13, 14, 16 and 18 were reported for the first time from the Acanthopanax genus. Except for compounds 4 and 9, other compounds were isolated from A. henryi (Oliv.) Harms for the first time. The rare anthraquinone, compound 2, significantly decreased the production of NO and the levels of other inflammatory factors, such as TNF-α and IL-6, in lipopolysaccharide (LPS)-stimulated macrophages in a dose-dependent manner. This is the first time to report anti-inflammatory effect of this compound.

Phenolic Constituents from the Flowers of Hamamelis japonica Sieb. et Zucc.

  • Yim, Soon-Ho;Lee, Young Ju;Park, Ki Deok;Lee, Ik-Soo;Shin, Boo Ahn;Jung, Da-Woon;Williams, Darren R.;Kim, Hyun Jung
    • Natural Product Sciences
    • /
    • v.21 no.3
    • /
    • pp.162-169
    • /
    • 2015
  • Hamamelis japonica (Hamamelidaceae), widely known as Japanese witch hazel, is a deciduous flowering shrub that produces compact clumps of yellow or orange-red flowers with long and thin petals. As a part of our ongoing search for phenolic constituents from this plant, eleven phenolic constituents including six flavonol glycosides, a chalcone glycoside, two coumaroyl flavonol glycosides and two galloylated compounds were isolated from the flowers. Their structures were elucidated as methyl gallate (1), myricitrin (2), hyperoside (3), isoquercitrin (4), quercitrin (5), spiraeoside (6), kaempferol 4'-O-β-glucopyranoside (7), chalcononaringenin 2'-O-β-glucopyranoside (8), trans-tiliroside (9), cis-tiliroside (10), and pentagalloyl-O-β-D-glucose (11), respectively. These structures of the compounds were identified on the basis of spectroscopic studies including the on-line LCNMR-MS and conventional NMR techniques. Particularly, directly coupled LC-NMR-MS afforded sufficient structural information rapidly to identify three flavonol glycosides (2 - 4) with the same molecular weight in an extract of Hamamelis japonica flowers without laborious fractionation and purification step. Cytotoxic effects of all the isolated phenolic compounds were evaluated on HCT116 human colon cancer cells, and pentagalloyl-O-β-D-glucose (11) was found to be significantly potent in inhibiting cancer cell growth.

Anti-Proliferative Effects of β-Cyclodextrin Inclusion Complexes with Coumarinolignans from Acer mono (고로쇠 Coumarinolignan의 β-Cyclodextrin 포접화합물 제조 및 암세포증식 억제활성)

  • Yim, Soon-Ho;Jung, Da-Woon;Williams, Darren R.;Geckeler, Kurt E.;Kim, Kyung Keun;Shin, Boo Ahn;Lee, Ik-Soo;Kim, Huyn Jung
    • Korean Journal of Pharmacognosy
    • /
    • v.46 no.2
    • /
    • pp.133-139
    • /
    • 2015
  • Two coumarinolignans, cleomiscosins C (1) and D (2) were isolated from the heartwood of Acer mono, together with four compounds, 5-O-methyl-(E)-resveratrol-3-O-${\beta}$-D-glucopyranoside (3), 5-O-methyl-(E)-resveratrol-3-O-${\beta}$-D-apiofuranosyl-(1$\rightarrow$6)-${\beta}$-D-glucopyranoside (4), scopoletin (5), and (E)-resveratrol-3-O-${\beta}$-D-glucopyranoside (6). Of them, cleomiscosins C (1) and D (2) were applied to preparing inclusion complex molecules with ${\beta}$-cyclodextrin (${\beta}$-CD) to improve the very poor solubility in cell media. The CD complexes of 1 and 2 exhibited an enhancement of water solubility which is feasible to measure their cytotoxicity using a spectrophotometer in a cell-based assay. Anti-proliferative activity of these complex molecules was successfully estimated on HCT116 human colon cancer cells, and cleomiscosin D (2) showed anti-proliferative effects at the concentration of 1.95~31.2 ${{\mu}g}$/mL in a dose-dependent manner.

Chemical Constituents from the Aerial Parts of Bupleurum falcatum L. and Biological Evidences

  • Tung, Nguyen Huu;Uto, Takuhiro;Morinaga, Osamu;Shoyama, Yukihiro
    • Natural Product Sciences
    • /
    • v.21 no.2
    • /
    • pp.71-75
    • /
    • 2015
  • In this study, phytochemical investigation on the aerial parts of Bupleurum falcatum resulted in the isolation of fourteen compounds including three quinic acid derivatives (1 - 3), five flavonoids (4 - 8), three monoterpene glycosides (9 - 11), and three saikosaponins (12 - 14). Compound 1 was first isolated from nature and unambiguously determined to be 3-O-feruloyl 5-O-caffeoylquinic acid on the basis of the extensive spectroscopic evidence. Biological testing revealed that saikosaponin A (12) and saikosaponin D (13) showed moderate antiproliferative effects on HL-60 and HepG2 cancer cell lines.

Isolation and Identification of Terpenoids from the Fruits of Acanthopanax chiisanensis

  • Lee, Jeong Min;Cho, Sunghun;Lee, Myoung-Hee;Cho, Seon Haeng;Park, Chun-Geon;Lee, Sanghyun
    • Natural Product Sciences
    • /
    • v.21 no.2
    • /
    • pp.82-86
    • /
    • 2015
  • Phytochemical constituents were isolated from the fruits of Acanthopanax chiisanensis by repeated column chromatography. Their structures were identified as $\beta$-sitosterol (1), daucosterol (2), sesamin (3), chiisanogenin (4), and $22\alpha$-hydroxy chiisanogenin (5) by spectroscopic analysis (MS, 1H-, and 13C-NMR). Compounds 1 - 5 were isolated for the first time from the fruits of A. chiisanensis.