• 제목/요약/키워드: BOD reduction

검색결과 189건 처리시간 0.025초

환경용량을 고려한 유역 오염부하삭감량 추정 연구 (An Estimation Study of Watershed Pollution Load Reduction Using Environmental Capacity)

  • 정재성;박영기;김종국
    • 대한환경공학회지
    • /
    • 제28권12호
    • /
    • pp.1265-1273
    • /
    • 2006
  • 용담댐 저수지에 대하여 목표수질 설정과 오염물질 부하량 추정 및 유량분석을 실시하여 수질의 변화과정을 모의함으로써 환경용량과 오염부하삭감량을 추정하였다. 목표수질은 상수원수 $1{\sim}2$등급, COD $1.0{\sim}3.0$ mg/L와 TP $0.01{\sim}0.03$ mg/L로 설정하고, 용담댐 저수지의 수질모형을 42개 소구획을 가진 WASP5로 구성하고, 보정하여 측정치와 계산치의 상관계수는 BOD 0.73, $PO_4-P$ 0.98이었다. 목표수질 COD 2.0 mg/L와 TP 0.02 mg/L에 대한 환경용량은 연구조건에 따라 BOD $131,880{\sim}4,694$ kg/일, TP $7,855{\sim}167$ kg/일이고, 각 경우의 오염부하 삭감률은 BOD $51{\sim}62%$, TP $47{\sim}67%$로 나타났다. 환경용량은 기존연구보다 작게 추정되었고 삭감부하율은 기존결과들의 중간에 해당하였다. 상수원수 $1{\sim}2$등급의 수질을 연중 달성할 오염부하 삭감률은 기존 연구조건에서 BOD $72{\sim}16%$, TP $78{\sim}36%$이고, 신규 연구조건에서 BOD $81{\sim}44%$, TP $84{\sim}52%$로 나타났다. 기존연구의 삭감량과 비교하면 BOD는 가장 적고 TP는 4개 중 2번째로 적었다. 목표삭감부하량의 소유역별 배분에서 TP는 취수탑 구획에 대한 근접도의 영향이 크게 나타났으나 COD는 별다른 차이가 없었다.

영산강 하류부의 목표수질 달성을 위한 BOD 부하량 삭감방법의 비교 (A Comparison Between Reduction Methods for BOD Loadings to Achieve Water Quality Standards at the End of the Yeongsan River)

  • 황대호;정효준;이홍근
    • 한국환경보건학회지
    • /
    • 제27권2호
    • /
    • pp.119-126
    • /
    • 2001
  • The key point in establishing water quality management measures is how to decide the load reduction for pollution sources. This study was performed to compare reduction methods for BOD loadings to achieve water quality standards at the end of the Yeongsan river. The target year is 2006 and 2011 and reduction methods are uniform treatment and treatment by influence rate. Using QUAL2E model, the study was performed under the conditions of establishing and non-establishing the publicly owned treatment works(POTWs). Uniform treatment which allocate the same reduction rate to pollution sources showed that all streams into the river should be applied for the reduction. However, treatment by influence rate which allocate the reduction rate by the order of influence rate showed that achieving target quality might be possible with a few streams for the reduction. But total amount of load reduction of streams was not significantly different from two methods.

  • PDF

금강수계의 수질관리를 위한 QUAL-2E 모델의 적용(II) -자생BOD를 고려한 허용오염부하량 산정- (Application of QUAL-2E Model for Water Quality Management in the Keum River -Waste loads Allocation Analysis by Considering Autochthonous BOD-)

  • 김종구;이지연
    • 한국환경과학회지
    • /
    • 제10권1호
    • /
    • pp.21-25
    • /
    • 2001
  • The Keum river has been utilized for drinking water supply of several city including Kunsan city and is deepening pollution state due to numerous municipal and industrial discharges. The concentration BOD in river is affected by the organic loading from a tributary and the algae biomass that largely happen to under eutrophication state. In the eutrophic water mass such as the Keum river, the autochthonous BOD was very important part for making a decision of water quality management, because it was accounted for majority of the total BOD. The predict of water quality has important meaning for management of water quality pollution of the Keum river. The purpose of this study will manage and predict water quality of the Keum river using QUAL-2E model considering the autochthonous BOD. The estimation of autochthonous BOD represented that the relationship between BOD and chlorophyll a. The regression equation was shown to be autochthonous BOD=$\beta$(sub)5$\times$chlorophyll a. The results of this study may be summarized as followed; The QUAL-2E model was calibrated with the data surveyed in the field of the study area in June, 1998. The calculated value by QUAL-2E model are in good agree to measured value within relative error of 7.80~20.33%. Especially, in the case of the considering autochthonous BOD, the calculated value of BOD were fairly good coincided with the observed values within relative error of 15%. But the case of not considering autochthonous BOD, relative error of BOD was shown to be 43.2%. In order to attain II grade of water quality standard in Puyo station which has a intake facility of water supply, we reduced to the pollutants loading of tributaries. In the case of removed 100% BOD of tributaries, the BOD of Puyo station was 4.07mg/$\ell$, belong to III grade of water quality standard. But in the case of removed 88% nutrient of tributaries, it was satisfied to II grade of water quality standard as below 3mg/$\ell$ of BOD. For estimation of autochthonous BOD in Keum river, we are performed simulating in accordance with reduction of nutrient load(50~100%) under conditions removal 90% organic load. Occupancy of autochthonous BOD according to nutrient loading reductions were varied from 25.97~79.51%. Occupancy of autochthonous BOD was shown to be a tendency to increasing in accordance with reduction of nutrient loading. Showing the above results, the nutrient that one of the growing factor of algae was important role in decision of BOD in the Keum river. For the water quality management of the Keum river, therefore, it is necessary to considering autochthonous BOD and to construction of advanced sewage treatment plant for nutrient removal.

  • PDF

하수(下水) 처리장(處理場)에서 정수조폐액(淨水槽廢液)의 혐기성소화(嫌氣性消化) 처리(處理)에 관한 연구(硏究) (Anaerobic Digestion of Thickened Septage at Municipal Wastewater Treatment Plant)

  • 최의소;김태형;이호식
    • 상하수도학회지
    • /
    • 제7권1호
    • /
    • pp.13-19
    • /
    • 1993
  • Anaerobic Digestion of thickened septage was investigated in this study. Thickening could reduce the volume of septage to be treated to about 40% with 12hr HRT. The VS and BOD removal efficiencies were respectively 28 to 45%, and 75% when digested the thickened septage with 30 day HRT Or $1.4kgVS/m^3/d$. The BOD removal efficiency could be increased to about 90% with subsequent settling tank with about 6 hours HRT. The gas production rate was 0.22 to $0.35m^3gas/kgVSadd$($0.75m^3gas/kgVSrm$), or $1.32m^3gas/kgBOD_{rm}$. In addition, the supernatant of thickener could be returned to the aeration tank treating domestic sewage. In this case, a BOD loading rate of 0.5 to $0.7kgBOD/m^3/d$ or 0.5kgBOD/kgMLVSS/d was proposed for 80% BOD reduction.

  • PDF

절간고구마원료 주정폐액을 이용한 단세포단백질의 생산 및 폐액의 BOD제거 (Growth of Yeasts in Alcohol Distiller′s Waste of Dried Sweet Potato for Single-cell Protein Production and BOD Reduction)

  • 이형춘;구영조;민병용;이홍근
    • 한국미생물·생명공학회지
    • /
    • 제10권2호
    • /
    • pp.95-100
    • /
    • 1982
  • 절간고구마원료주정폐액을 이용하여 단세포단백질을 생산함과 동시에 폐액의 BOD를 제거할 목적으로 우수효모를 선발하고, 선발된 효모의 배양조건을 검토한 후 3$\ell$ -jar fermenter에 의한 통기 배양을 한 결과 다음과 같은 결론을 얻었다. 폐액을 여과한 여액의 조성은 BOD$_{5}$ 15700ppm, COD 36800ppm, 환원당 3300ppm, 총질소 710ppm, 고형물51800ppm, 조회분390ppm이었다. 우수효모로 선발된 Torulopsis candida FRI YA-15를 $25^{\circ}C$에서 48시간 진탕배양하였을 때, 배양폐액에 대한 균체수율은 3.38g/$\ell$, BOD$_{5}$ 및 COD제거율은 각각 38.9%, 31.8%이었다. T. candida의 최적생육초기 pH는 4.0이었으며, 최적배양온도는 35$^{\circ}C$였다. 설정된 초기PH 및 온도하에서 3$\ell$-jar fermenter를 사용하여 통기량 2vvm, 교반속도 100rpm으로 배양하였을 때, 배양 28시간후에 최대로 생육하였으며, 그 때 배양액에 대한 균체수율은 3.2g/$\ell$였다. 건조균체의 조단백질함량은 47.98%였다.

  • PDF

의암호 유역에서 발생하는 자체생산 유기물 저감방안에 관한 연구 (The Study on Decline Plan of Primary Production Organic Matter of Uiam Lake Basin)

  • 허인량;이건호;함광준;최지용;정의호
    • 한국환경보건학회지
    • /
    • 제30권1호
    • /
    • pp.50-58
    • /
    • 2004
  • The present study was designed to evaluate primary production organic matter in basin of lake around by execution of total maximum daily loading. BOD influent loading of Uiam lake was 2,819 kg/day, which was less then 28.3 percent, total effuluent loading as 3,619 kg/day, in comparision with BOD, total nitrogen influent loading was 4,681 kg/day, which was less then 10.0 percent, total effuluent loading as 5,150 kg/day. But in case of total phosphors influent loading was 73.3 kg/day, which was more then 34.2 percent, total run off loading as 48.3 kg/day. The result of survey reduction plan of primary production organic matter in basin of lake around which objectives of abstract is as follows. First plan was reduction of primary production organic matter by moving the outlet of municipal wastewater treatment center from present place to lake downstream. Secondary plan was improvement by diffusion type of outlet municipal wastewater treatment center. The third plan was reduction of environmental impact by passing and storing of municipal wastewater. Finally plan was decline water surface level which was present hydrouric retention time was reduction from 7.6 day to 6.0 day per meter.

The Effects of Light Intensity, Inoculum Size, and Cell Immobilisation on the Treatment of Sago Effluent with Rhodopseudomonas palustris Strain B1

  • Ibrahim, Shaliza;Vikineswary, S.;Al-Azad, Sujjat;Chong, L.L.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권5호
    • /
    • pp.377-381
    • /
    • 2006
  • A study was carried out to determine a suitable light intensity and inoculum size for the growth of Rhodopseudomonas palustris strain B1. The pollution reduction of sago effluent using free and immobilised R. palustris cells was also evaluated. The growth rate in glutamatemalate medium was highest at 4 klux compared to 2.5 and 3 klux. The optimal inoculum size was 10% (v/v). Both the COD and BOD of the sago effluent were reduced by 67% after three days of treatment. The difference in biomass production or BOD and COD removal with higher inoculum sizes of 15 and 20% was minimal. This could be attributed to limited nutrient availability in the substrate. The use of immobilised cells of R. palustris reduced the pollution load 10% less compared to pollution reduction by free cells. Hence, there was no significant difference in using free or immobilised cells for the treatment of sago effluent.

모래여과 및 오존처리에 의한 하천수 수질개선 효과 연구(1) - BOD, COD, SS 및 색도 제거 경향 고찰 (Improvement of River Water Quality By Combined Treatment of Sand Filtration and Ozonation(1) - Focusing on Reduction of BOD, COD, SS and Color)

  • 최창희;남궁규철;윤종우;이채영
    • 한국물환경학회지
    • /
    • 제27권6호
    • /
    • pp.813-821
    • /
    • 2011
  • While various aspects affect river water quality, reduction of water flow rate during dry seasons is one of the most significant factors causing severe water pollution in river water environment. The aim of this study is to investigate the feasibility of applying a physicochemical method (sand filtration + ozonation) for improving river water quality within a short period. The parameters analyzed and assessed were $COD_{cr}$, BOD, SS and color. The source river water had a severe pollution level showing COD 8.8~17.2 mg/L (ave. 11.9 mg/L), BOD 4.8~13.3 mg/L (ave. 8.3 mg/L), SS 9.0~22.1 mg/L (ave. 12.8 mg/L) and color 34.4~77.1 degree (ave. 56.5 degree) during the experimental periods. The variation trends showed a relatively low correlation between BOD and COD and between color and COD, while SS showed very low correlation with other parameters. The combined process of sand filtration and ozonation showed averaged removal efficiency of COD 37.2%, BOD 48.4%, SS 60.1% and colority 45.1%, respectively. The marked change of BOD level from 8.3 mg/L to 4.3 mg/L under the experimental conditions in this study implied the improvement of class V to class III set by the river water quality standard in Korea.

가축분뇨 자원화 처리시 수질오염물질 삭감율 산정 연구 (A Study on the Estimation of Water Pollutants Reduction Ratio in Livestock Manure Fertilization)

  • 어성욱
    • 한국물환경학회지
    • /
    • 제33권6호
    • /
    • pp.722-727
    • /
    • 2017
  • Livestock manure is known to be the main cause of non-point pollution in agricultural areas. The pollutant reduction ratio of livestock manure recycling to fertilizers was measured in order to analyze the effect on the water quality of the Total Maximum Daily Load (TMDL) system in Korea. The reduction ratio has been applied by theoretical consideration without a survey, and there is no value for Total Organic Carbon (TOC) newly introducing any organic items. The reduction ratio of each pollutant from this study was revealed as follows: TOC, BOD, T-N and T-P were 0.34, 0.60, 0.37, and 0.42 for individual farm and 0.38, 0.61, 0.45 and 0.44 for entrustment facilities, respectively. The reduction ratio of individual farm was surveyed as TOC 0.63, BOD 0.62, T-N 0.42 and T-P 0.32 for liquid fertilizer, and TOC 0.30, BOD 0.64, T-N 0.40 and T-P 0.48 for compost. The total reduction ratio was derived by multiplying the ratio for liquid fertilizer and compost by the respective load. Compared to the pollutant reduction ratio of the individual farm with entrustment facilities marking the higher in liquid fertilizer and the lower in compost. Through this study, we found the difference of pollutant reduction ratio between a livestock manure recycling process and facilities. Although phosphorus is known as a preservative matter, the treatment efficiency of T-P is analyzed to decrease by chemical precipitation.