• Title/Summary/Keyword: BOD pollutants load

Search Result 96, Processing Time 0.028 seconds

Water Quality Analysis and Evaluation of Management Strategies and Policies in Laguna Lake, Philippines (필리핀 라구나호수의 수질분석 및 관리 정책 평가)

  • Reyes, Nash Jett D.G.;Geronimo, Franz Kevin F.;Redillas, Marla M.;Hong, Jungsun;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.20 no.1
    • /
    • pp.43-53
    • /
    • 2018
  • Laguna Lake is the largest inland fresh water body in the Philippines. It primarily serves as a site for aquaculture, hydropower, transportation, and water supply industries. Due to Laguna Lake's diverse functionalities, competition among water users became prominent. Water quality began to deteriorate due to various pollutant contributions in this process, thereby affecting the soundness of the aquatic ecosystem. This study was conducted to evaluate the current water quality management policy from the viewpoint of ecological environment through the evaluation of the water quality of Laguna Lake. Concentrations of water pollutants such as ammonia ($NH_3$), biochemical oxygen demand (BOD), chloride ($Cl^-$), pH, and total suspended solids (TSS) exceeded the water quality standards of the Philippines' Department of Environment and Natural Resources (DENR). The water quality of the lake was also affected by the pollutant load due to agriculture and urban stormwater runoff in the watershed. The salinity and contaminated water from Pasig River also affected the water quality of Laguna Lake. Long-term water quality analysis showed that the water quality of Laguna Lake is also influenced by rainfall-related seasonal variations. The results of the water quality analysis of Laguna Lake indicated that the environmental management techniques of the Philippines should be changed from the conventional water management into an integrated watershed management scheme in the future. It is therefore necessary to study and introduce advanced watershed management measures in the Philippines based from the policies of other developed countries.

Anaerobic Biodegradability of Leachates Generated at Landfill Age (매립년한에 따른 침출수의 혐기성 생분해 특성)

  • Shin, Hang-Sik;Lee, Chae-young;Kang, Ki-hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.1
    • /
    • pp.90-96
    • /
    • 2000
  • The composition of leachates varies depending on the waste characteristics, landfill age and landfilling method. Generally, leachates contain high dissolved organic substance and ammonia nitrogen whereas phosphorus concentration was very low. Leachate A produced from young landfill is characterized by high BOD5/COD ratio (0.8) whereas leachate C produced from old landfill has lower BOD5/COD ratio (0.1). Maximum biochemical methane potential of leachate A, B (from medium landfill) and C were 271,106 and 4 ml CH4/g-COD, respectively. On the other hand, the maximum biodegradability of leachate A, B, and C were 75,30, and 1%, respectively. These results indicated that anaerobic treatment of leachate from young landfill was effective in removing organic pollutants. In case of leachate C, carbon might reside in the form of large molecular weight organic compounds such as lignins, humic acids and other polymerized compounds of soils, which are resistant to biodegradation. The lag-phase period increased with the increasing organic concentration in leachate. In case of leachate A of concentration greater than 25%, the lag-phase period increased sharply. This implied that the start-up period of anaerobic process using an unacclimated inoculum could be extended due to the higher concentration of leachate. This relatively long lag-phase is probably related to the fact that most of the inhibitory compounds have been diluted beyond their inhibitory concentrations of less than 50%. Furthermore, the ultimate methane yield and methane production rate decreased as leachate concentration increased. It was anticipated the potential inhibition was related with the steady-state inhibition as well as the initial shock load.

  • PDF

A Study on the Characteristic of Pollutants of Water Quality and Sediments in Gul-po Stream Basin (굴포천 유역 내 수질 및 퇴적물의 오염물질 특성 파악에 관한 연구)

  • Ahn, Tae-Woong;Jung, Jae-Hoon;Kim, Tae-Hoon;Kim, Sea-Won;Choi, I-Song;Oh, Jong-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.7
    • /
    • pp.495-503
    • /
    • 2012
  • The water quality of Gul-po Stream, the subject of this study, has been deteriorating because of the inflow of domestic sewage and the industrial wastewater due to industrialization and the problems relating to the structure of river including slow flow rate and the covering of river. In particular, the domestic sewage from small-medium sized factories by the river and large-scale industrial complex by the upper and middle streams of the river, and the domestic sewage from increasing population due to the regional development are the main pollution sources. Thus, this study aims to survey the water quality and the sediment affecting Gul-po Stream; monitor the state of pollution in water body; assess the yield of sediment and investigate the water quality of river and the problems arising from sediment; and then suggest reasonable ways to improve the situation. The findings from surveying pollution load shows the discharge increases up to average 72.8 times from the upper stream to the downstream of Gul-po Stream, and pollution load increases up to: SS 111 times, BOD 150 times, COD 145 times, the nutrient T-N 222 times and T-P 312 times on an average basis. As for the pollution concentration range, ignition loss is 1.29~12.43%; COD is 4,015~37,547 kg/day; T-N and T-P 94.8~352.5 kg/day and 81.8~372.3 kg/day, respectively. As for the releasing rate of sediment, T-N is -14.46~$156.61mg/m^2/day$; T-P is -11.53~$26.10mg/m^2/day$, indicating the likelihood of internal contamination due to the elution of sediment. This study is expected to be used as basic data to manage Gul-po Stream basin.

Analysing the effect of impervious cover management techniques on the reduction of runoff and pollutant loads (불투수면 저감기법의 유출량 및 오염부하량 저감 효과 분석)

  • Park, Hyung Seok;Choi, Hwan Gyu;Chung, Se Woong
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.1
    • /
    • pp.16-34
    • /
    • 2015
  • Impervious covers(IC) are artificial structures, such as driveways, sidewalks, building's roofs, and parking lots, through which water cannot infiltrate into the soil. IC is an environmental concern because the pavement materials seal the soil surface, decreasing rainwater infiltration and natural groundwater recharge, and consequently disturb the hydrological cycle in a watershed. Increase of IC in a watershed can cause more frequent flooding, higher flood peaks, groundwater drawdown, dry river, and decline of water quality and ecosystem health. There has been an increased public interest in the institutional adoption of LID(Low Impact Development) and GI(Green Infrastructure) techniques to address the adverse impact of IC. The objectives of this study were to construct the modeling site for a samll urban watershed with the Storm Water Management Model(SWMM), and to evaluate the effect of various LID techniques on the control of rainfall runoff processes and non-point pollutant load. The model was calibrated and validated using the field data collected during two flood events on July 17 and August 11, 2009, respectively, and applied to a complex area, where is consist of apartments, school, roads, park, etc. The LID techniques applied to the impervious area were decentralized rainwater management measures such as pervious cover and green roof. The results showed that the increase of perviousness land cover through LID applications decreases the runoff volume and pollutants loading during flood events. In particular, applications of pervious pavement for parking lots and sidewalk, green roof, and their combinations reduced the total volume of runoff by 15~61 % and non-point pollutant loads by TSS 22~72 %, BOD 23~71 %, COD 22~71 %, TN 15~79 %, TP 9~64 % in the study site.

Status of Fish Inhabitation and Distribution of Eight Abundant Species in Relation with Water Quality in Streams and Rivers, Ulsan City (울산 하천 및 강에서의 어류서식 현황 및 8개 대표종의 이화학적 수질 내성범위)

  • Seo, Jin-Won;Lim, In-Soo;Kim, Ho-Joon;Lee, Hye-Keun
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.3
    • /
    • pp.283-293
    • /
    • 2008
  • The objectives of the study were firstly to provide fundamental data for establishment of total maximum daily load (TMDL) management in Ulsan City, and secondly to make practical application of stream health assessment with tolerance range by each species when physiochemical and fish investigations were carried out together. A total of 44 sites in Taehwa River, Hoiya River, Dong Stream, and Cheongryang Stream were selected to monitor water qualities seasonally and fish investigation was performed in August 2006. Among the parameters of water quality, biological oxygen demand (BOD) and dissolved oxygen (DO) related to respiration, total nitrogen (T-N) and total phosphorus (T-P) related to nutrient and eutrophication, and total suspended solids (TSS) and $NH_4$-N were compared with vertical box plot by 8 dominant species. According to the fish investigation, 12 families 33 species were found including endangered species (Pungitius kaibarae) and introduced species (Lepomis macrochirus, Micropterus salmoides), and appearance rate of Korean endemic species was greater in Taehwa River (29.2%) than others. As the results of tolerance range by species, Zacco koreanus, Rhynchocypris oxycephalus, Iksookimia longicorpa, and Squalidus gracilis majimae had limited low range by water quality parameters indicating preference of good water quality. Whereas, Carassius auratus and Pseudorasbora parva were found downstream and urban-streams which were exposed from frequent inflow of pollutants. It concludes that the results help distinguishing sensitive, intermediate, and tolerant species when we evaluate stream health assessment with fish, and further making practical application for conservation and restoration of aquatic ecosystem.

Analysis of Fish Ecology and Water Quality for Health Assessments of Geum - River Watershed (금강본류의 건강성 평가를 위한 어류생태 및 수질 특성분석)

  • Park, Yun-Jeong;Lee, Sang-Jae;An, Kwang Guk
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.2
    • /
    • pp.187-201
    • /
    • 2019
  • This study examined the physicochemical water quality and evaluated the ecological health in 14 sites of Geum River (upstream, mid-stream, and downstream) using the fish community distribution and guilds and eight multi-variable matrices of FAI (Fish Assessment Index) during June 2008-May 2009. The analysis of the water quality variables showed no significant variation in the upstream and mid-stream but a sharp variation due to the accumulation of organic matter from the point where the treated water of Gap and Miho streams flew. The analysis of physicochemical water properties showed that BOD, COD, TN, TP, Cond, and Chl-a tended to increase while DO decreased to cause eutrophication and algae development from the downstream where Miho and Gap stream merged. The analysis of fish community showed that the species richness index and species diversity index increased in the mid-stream area but decreased in the downstream area, indicating the stable ecosystem in the upper stream and the relatively unstable ecosystem in the downstream. The analysis of the species distribution showed that the dominant species were Zacco platypus that accounted for 20.9% of all fish species and Zacco koreanus that accounted for 13.1%. The analysis of the fish tolerance and feeding guild characteristics showed that the sensitive species, the insectivore species, and the aquatic species were dominant in the mid-stream point. On the other hand, contaminants from the sewage water treatment plant of Miho stream had a profound effect in the downstream to show the dominance of tolerant species, omnivorous species, and lentic species. Therefore, it is necessary to improve water quality by reducing the load of urban pollutants and to pay attention to the conservation and restoration of aquatic ecosystems.