• Title/Summary/Keyword: BOD overflow load

Search Result 9, Processing Time 0.025 seconds

Comparison of Pollutant Control in Combined Sewer Overflows and Separated Sewer Overflows using the Separation Wall (우오수분리벽을 이용한 합류식 하수관거와 분류식 우수관거의 월류수 제어효과 비교)

  • Lim, Bong-Su;Kim, Do-Young;Lee, Kuang-Chun
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.458-466
    • /
    • 2007
  • This study is to evaluate control effects of separation wall by surveying water quality and sewer overflows during dry and wet periods in combined sewer and separated sewer systems. Ravine water from the combined Seokgyo outfall with the separation wall was separated about four times larger than sewage flow during dry periods. The water quality of the combined Seokgyo outfall with separation wall during dry periods is flow weighed average BOD 61 mg/L, the combined Cheonseokgyo outfall without the separation wall is average BOD 71 mg/L, and the separated Pyeongsong center outfall is average BOD 41 mg/L. The BOD concentration in separated outfall form about 57% of the combined outfall, and this means the separated outfall (i.e. storm sewer) is polluted by inflow of sewage. The overflow load of the separated outfall is ten times higher than the combined outfall and its overflow load per rainfall is three times than combined outfall during the wet periods. Therefore, the control plan of overflow load is required in storm sewer. The control effects of the overflow load increased 79% by setting the separation wall in the combined sewer, and showed 27% increase without the separation wall in separated sewer, but forecasted over 80% increase of effects if the separation wall was set.

The Estimation of Pollution Loads in First-flush Overflows with Various Rainfall and Regional Characteristics (강우 및 지역특성별 초기우수월류에 의한 오염부하 기여도 평가)

  • Kim, Hongtae;Shin, Dongseok;Kim, Yongseok
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.6
    • /
    • pp.622-631
    • /
    • 2014
  • The purpose of this research was to find a proper disposal rainfall extent to improve water quality. SWMM was applied to select catchment area and tested first flush load and rainfall extent. BOD 40mg/L was selected to dispose the first flush and sewer overflow with the same as the criteria of Sewerage Act. Design rainfall, BOD load ratio of first flush sewer overflow, and the ratio of disposal flow were analyzed under various rainfall distribution. BOD load and design rainfall to treat overflow in situation of first flush extent with 4.3~17.4% were 56~87% and 3.8~6.8 mm/day, respectively. In urban area, first flush loads were not correspond to land activities, but tend to increase with increasing rainfall amount and drainage area. The more the distribution of rainfall is similar to Huff-frontal or central distribution of rainfall, the more increase the first flush loads.

Control of the Sediment in a Combined Sewer Using a Separation Wall

  • Lim, Bong Su;Kwon, Chung Jin;Kim, Do Young;Lee, Kuang Chun
    • Environmental Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.71-75
    • /
    • 2013
  • This study is to evaluate the effects of the separation wall on the sediment quality and quantity in a combined sewer, by surveying the sewer overflow and sediments during a rainfall. Since the separation wall installed in the combined sewer separates the rainfall and the sewage, the flow rate of the sewage is increased, and the amount of the sediment deposited on the sewer is decreased. One sampling point was the outfall of Daesacheon with a separation wall, and the other was the outfall of Gwaryecheon without a separation wall, in Daejeon metropolitan city. The maximum control of the biochemical oxygen demand (BOD) overflow load was more than 38% in the Daesacheon point with the separation wall, during a rainfall of 0.11 mm/hr. The maximum control of the BOD overflow load was 24% in Gwaryecheon without a separation wall, during a rainfall of 1.0 mm/hr. According to the survey results of the sediment in the sewer, the discharged sediment deposited on the sewer in Gwaryecheon point was about 23% to 28% of the total suspended solid during the rainfall. In addition, the average velocity of sewage in the presence of sediment was about 0.30 m/s, and if the separation wall is installed, it was expected to be about 1.01 m/s, that is 3.4 times more than the same conditions, resulting in the reduction of the sediment deposit.

A Study on Runoff Characteristics of Combined Sewer Overflow(CSO) in Urban Area Using GIS & SWMM

  • Kim, Jae-Hoon;Paik, Do-Hyeon
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.6
    • /
    • pp.467-474
    • /
    • 2005
  • The runoff characteristics of combined sewer overflow(CSO) in the urban area of Jeonju were investigated and analyzed by using the SWMM (Storm Water Management Model) and GIS. From August to November 2004, investigations on two rainfall events were performed and flowrate, pH, BOD, COD, SS, T-N and T-P were measured. these data were used for model calibration. Using GIS technique, watershed characteristics of study area were calculated. that is, divide into sub_basin, total width, slope, make soil map etc. On the basis of the measured data and the simulation results by SWMM, it could be known that the $80-90\%$ of pollution load are discharged in early-stage storm runoff. SMC(site mean Concentration) for combined sewer system area were BOD 28.1, COD 31.5, SS 186 ppm etc. this is shown that during the rain fall, high concentration of waste was loaded to receiving water. Unit loads of combined sewer system area were BOD 306, COD 410, SS 789, T-N 79, T-P 6.8 kg/ha/yr.

Set up Reduction Goals of Combined Sewer Overflow Pollutant Load Using Long-Term Rainfall-Runoff Model Simulation (장기간 강우-유출 모의를 통한 합류식하수관로시스템의 월류부하량 저감목표 설정 연구)

  • Lee, Gunyoung;Na, Yongun;Ryu, Jaena;Oh, Jeill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.11
    • /
    • pp.785-794
    • /
    • 2013
  • Combined sewer overflows during rainfall events contain sewer sediments and surface pollutants. This can cause significant chemical, physical and biological problems to receiving watershed. However, there are no method that can commonly apply to decide criteria for controlling the pollutant load. In this study, it sets up the reduction goals of combined sewer overflow through long-term simulation using the rainfall-runoff model. From a review of domestic and foreign management standard of combined sewer overflow for this, it makes decision that 60% (phase 1), 85% (phase 2) of total pollutant load and frequency per year for reduction goals is more proper. Also, the result of analyzing long-term simulation (minimum 10 years) applied to research basin indicates that reduction goals of BOD pollutant load are 1,123 kg (phase 1) and 2,374 kg (phase 2), and overflow volumes for research objective achievement are $11,685m^3$ (phase 1) and $24,701m^3$ (phase 2).

Evaluation of Pollutant loads at Inflow Streams under Ara Waterway Basin

  • Han, Sangyun;Jung, Jongtai
    • Journal of Urban Science
    • /
    • v.10 no.1
    • /
    • pp.39-48
    • /
    • 2021
  • In this study, to evaluate the characteristics of the pollution in the major inflow tributaries and major environmental facilities in the watershed of Ara waterway, An inflow flow rate measurement and water quality analysis were conducted during dry and rainy seasons. In addition, the flow rate measurement, water quality analysis, and pollutant load at each monitoring point were compared and evaluated. Influx of BOD5, T-P and T-N into the tributaries of the ARA waterway watershed, excluding the Gulpo river watershed, during dry season were only 0.007%, 0.005% and 0.004% respectively of the incoming loads in the entire ARA waterway basin. In addition, it was confirmed that the discharge pollutant loads during rainfall event was about 440 times more for BOD5, about 545 times on T-P, and about 23 times on T-N in comparison to the pollutant loads during the dry days. When the Gulhyeon rubber dam was deflated, the discharged pollutant load during a rainfall was higher than the estimated load at the G7 monitoring point because the deposited pollutants from the upstream riverbed flowed down. Therefore, during a rainy season, it is necessary to manage the influx of high-load water pollutants from the overflow and deflation of the Gulhyun rubber dam as well as to find a strategy to reduce the pollutant loads in the Gulpo river watershed.

Evaluation of First Flush Rainfall Inflow and Pollution Loads into Manhole against Combined and Sanitary Sewer Overflows (초기우수 관거유입계수 산정 및 오염부하 기여도 평가)

  • Kim, Hongtae;Shin, Dongseok;Kim, Yongseok
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.1
    • /
    • pp.67-70
    • /
    • 2015
  • Some data into combined and sanitary sewer system were collected in order to find out the characteristics of discharge from first flush rainfall inflow. The inflow ratios of combined and sanitary sewer system were 0.46 and 0.27 during rains from various survey data. The average inflow ratio 0.31 was appropriate for general application because many watersheds were not classified clearly as combined or sanitary sewage treatment areas. The percentage of first flush loads in the whole BOD load was about 10%. This result was thought some meaningful, comparing with similarity of first flush pollution load contribution previous surveyed by KECO (2004).

Effect and Control of the Sediment in the Combined Sewer on CSOs (합류식 하수관거내 퇴적물이 CSOs에 미치는 영향 및 제어방안)

  • Lim, Bongsu;Kim, Doyoung;Lee, Kuangchun
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.36-43
    • /
    • 2011
  • This study is selected two points of combined sewer that occurred Fish Kill after first flush, that analyzed generation of pollutants and stream runoff generation of combined sewer overflows (CSOs) as fine weather and rainfall. In addition, this study was to analyze the relationship between CSOs and sediments, to propose measures to reduce the sediment relevant with CSOs and rainfall runoff from entering sewage treatment plants and measures for discharged directly into streams when indicate relatively good water quality after overflow. Sediments in combined sewer system was discharged about 50~80% as overflows during rainfall and we can reduce the amount of the CSOs at least 50% or more if the sewer does not exist in the sediments because of the amount of discharge about the amount of intercept has been investigated by 3~5 times. Because of velocity at sediment interval in sewer is very low, sewage velocity of about 3~5 times as much as it can increase the amount of sediment can be reduced if the separation wall is installed. Effective control of BOD overflow load is respectively 77.5%, 75.8% at first point, second point by the separation wall is installed. Drainage area greater than area in this study or many combined sewer overflows region is increased the more effective control of separation wall. Turbidity to measure changes in water quality of overflows can be used as an factor to control the intercept flows because the intercept flows(3Q) after the first flush has lowered removal efficiency and increases the operational load of sewage treatment plants. Sewage water quality after a overflow when the reasonable turbidity was measured at this point flows to excluded intercept flow(1Q) can be discharged to stream.

Determination of Interception Flow by Pollution Load Budget Analysis in Combined Sewer Watershed - Analysis of Pollution Load Budget in Watershed - (오염부하 물질수지 분석을 통한 합류식 하수관거 적정 차집용량 결정(I) -오염부하 물질수지 분석-)

  • Lee, Doojin;Kim, Juwhan;Woo, Hyungmin;Ahn, Hyowon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.5
    • /
    • pp.547-556
    • /
    • 2005
  • The objective of this study is to obtain adequate intercepting flow during wet weather conditions in combined sewer system. Two study sites are selected under considering different population density, one is developed area with heavy urbanization. Another is recently developing area. In the analysis of field investigation, SS was most significant in initial flushing effects compared with other factors and showed the result with the order of COD, TP, TN. As compared with event mean concentration(EMC) of runoff, BOD, TN and TP showed high concentrations in wide area with relatively large population density. It is by the reason that much pollution load was discharged to receiving water from urbanized area during wet period. According to results of storm-water modeling, 53% of total COD and 52% of total SS pollution load were discharged to receiving water by overflow than intercepting capacity in middle population density site. Also, in the urbanized area, pollution load was discharged to receiving water by 49% of total COD and 77% of total SS. These results can be applied to setup for pollution load flow(budget) generation, collection, treatment and discharging in order to obtain adequate intercepting flow.