• Title/Summary/Keyword: BNEB

Search Result 2, Processing Time 0.019 seconds

Adaptive Binary Negative-Exponential Backoff Algorithm Based on Contention Window Optimization in IEEE 802.11 WLAN

  • Choi, Bum-Gon;Lee, Ju-Yong;Chung, Min-Young
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.5
    • /
    • pp.896-909
    • /
    • 2010
  • IEEE 802.11 medium access control (MAC) employs the distributed coordination function (DCF) as the fundamental medium access function. DCF operates with binary exponential backoff (BEB) in order to avoid frame collisions. However it may waste wireless resources because collisions occur when multiple stations are contending for frame transmissions. In order to solve this problem, a binary negative-exponential backoff (BNEB) algorithm has been proposed that uses the maximum contention window size whenever a collision occurs. However, when the number of contending stations is small, the performance of BNEB is degraded due to the unnecessarily long backoff time. In this paper, we propose the adaptive BNEB (A-BNEB) algorithm to maximize the throughput regardless of the number of contending stations. A-BNEB estimates the number of contending stations and uses this value to adjust the maximum contention window size. Simulation results show that A-BNEB significantly improves the performance of IEEE 802.11 DCF and can maintain a high throughput irrespective of the number of contending stations.

Binary Negative-Exponential Backoff Algorithm to Enhance The Performance of IEEE 802.11 WLAN (IEEE 802.11 무선랜의 성능 향상을 위한 Binary Negative-Exponential Backoff 알고리즘)

  • Ki, Hyung-Joo;Choi, Seung-Hyuk;Chung, Min-Young;Lee, Tae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12A
    • /
    • pp.1229-1237
    • /
    • 2006
  • IEEE 802.11 has employed distributed coordination function (DCF) adopting carrier sense multiple access with collision avoidance (CSMA/CA). To effectively resolve collisions, DCF uses binary exponential backoff (BEB) algorithm with three parameters, i.e., backoff stage, backoff counter and contention window. If a collision occurs, stations involving in the collision increase their backoff stages by one and double their contention window sizes. However, DCF with BEB wastes wireless resource when there are many contending stations. Therefore, in this paper, to enhance the performance of wireless LAN, we propose binary negative-exponential backoff (BNEB) algorithm which maintains a maximum contention window size during collisions and reduces a contention window size to half after successful transmission of a frame without retransmissions. For IEEE 802.11, 802.11a and 802.11b standards, we also compare the performance of DCF with BEB to that with BNEB.