• 제목/요약/키워드: BMP-4 expression

검색결과 106건 처리시간 0.017초

냉동 보존 전후의 사람 탯줄 유래 줄기세포의 특성 분석 (Stem Cell Properties of Human Umbilical Cord-derived Stem Cells after Cryopreservation)

  • 강현미;박세아;윤진아;허진영;김해권
    • 한국발생생물학회지:발생과생식
    • /
    • 제12권3호
    • /
    • pp.221-229
    • /
    • 2008
  • 줄기세포를 임상에 적용하기 위해서는 체외에서 증식 과정이 필수적이다. 그러나 배아줄기세포와는 달리 성체줄기세포는 체외에서 증식할 경우 일정시간이 지나면 줄기세포의 특성을 잃기 때문에 임상사용에 있어 제한점을 가지고 있다. 이러한 문제점을 극복하기 위해 줄기세포의 특성을 잃지 않게 세포를 보존하는 방법이 필요하며, 본 연구에서는 탯줄 유래 줄기세포를 동결 보존한 후 해동시켜 줄기세포의 특성을 분석하였다. 사람의 탯줄 유래 세포를 분리하여 체외에서 배양한 후 2번째 또는 3번째 계대의 세포를 25% FBS와 10% DMSO가 첨가된 냉동배양액에 넣어 $-196^{\circ}C$에서 동결보존한 후, 6개월 뒤에 해동시켜 세포의 성장 속도와 유전자 및 단백질 발현을 살펴보았다. 냉동 보존한 후 세포를 해동시킨 결과 74%의 생존율을 보였으며, 이 세포를 체외에서 배양하였을 경우, 냉동보존하기 전의 세포와 유사하게 방추사 모양의 섬유 아세포의 형태를 나타냈다. 또한, 성장 속도 역시 냉동보존하기 전의 세포와 똑같이 10번째 계대까지 배양되었으며, 42번 분열 능력을 나타냈다. RT-PCR 결과, 냉동 전후 세포 모두에서 Oct-4, nanog, SCF, NCAM, nestin, GATA4, BMP4, HLA-1 유전자는 모두 발현하였으며, Brachyury와 HLA-DR은 발현하지 않았다. 면역세포 화학 염색 결과, 배아줄기세포 단백질로 알려진 SSEA-3, -4, Oct-4 그리고 중간엽줄기세포 단백질인 Thy-1은 모두 발현하였으며, vimentin, fibronectin, HLA-1, HCAM, ICAM 모두 발현하였다. 그러나 SSEA-4과 Thy-1, vimentin, fibronectin, HLA-1는 냉동보존한 후 배양된 탯줄질의 발현은 냉동보존하기 전후의 탯줄 유래 세포에서 큰 차이가 없었다. 냉동 보존된 탯줄 유래 세포는 세포의 분열능력과 유전자 및 단백질의 발현이 냉동 보존 전 세포와 유사한 것으로 나타났다. 이러한 결과는 냉동보존법이 임상적으로 세포 치료 시 적절한 세포의 수나 시간을 맞추는데 효과적인 방법이 될 수 있을 것으로 기대된다.

  • PDF

Ginsenoside Rg4 Enhances the Inductive Effects of Human Dermal Papilla Spheres on Hair Growth Via the AKT/GSK-3β/β-Catenin Signaling Pathway

  • Lee, Yun Hee;Choi, Hui-Ji;Kim, Ji Yea;Kim, Ji-Eun;Lee, Jee-Hyun;Cho, So-Hyun;Yun, Mi-Young;An, Sungkwan;Song, Gyu Yong;Bae, Seunghee
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권7호
    • /
    • pp.933-941
    • /
    • 2021
  • Ginsenoside Rg4 is a rare ginsenoside that is naturally found in ginseng, and exhibits a wide range of biological activities including antioxidant and anti-inflammatory properties in several cell types. The purpose of this study was to use an in vivo model of hair follicle (HF)-mimic based on a human dermal papilla (DP) spheroid system prepared by three-dimensional (3D) culture and to investigate the effect of Rg4 on the hair-inductive properties of DP cells. Treatment of the DP spheroids with Rg4 (20 to 50 ㎍/ml) significantly increased the viability and size of the DP spheres in a dose-dependent manner. Rg4 also increased the mRNA and protein expression of DP signature genes that are related to hair growth including ALP, BMP2, and VCAN in the DP spheres. Analysis of the signaling molecules and luciferase reporter assays further revealed that Rg4 induces the activation of phosphoinositide 3-kinase (PI3K)/AKT and the inhibitory phosphorylation of GSK3β, which activates the WNT/β-catenin signaling pathway. These results correlated with not only the increased nuclear translocation of β-catenin following the treatment of the DP spheres with Rg4 but also the significant elevation of mRNA expression of the downstream target genes of the WNT/β-catenin pathway including WNT5A, β-catenin, and LEF1. In conclusion, these results demonstrated that ginsenoside Rg4 promotes the hair-inductive properties of DP cells by activating the AKT/GSK3β/β-catenin signaling pathway in DP spheres, suggesting that Rg4 could be a potential natural therapy for hair growth.

Deficiency of Formyl Peptide Receptor 2 Retards Hair Regeneration by Modulating the Activation of Hair Follicle Stem Cells and Dermal Papilla Cells in Mice

  • Han, Jinsol;Lee, Chanbin;Jung, Youngmi
    • 한국발생생물학회지:발생과생식
    • /
    • 제25권4호
    • /
    • pp.279-291
    • /
    • 2021
  • Hair loss is one of the most common chronic diseases, with a detrimental effect on a patient's psychosocial life. Hair loss results from damage to the hair follicle (HF) and/or hair regeneration cycle. Various damaging factors, such as hereditary, inflammation, and aging, impair hair regeneration by inhibiting the activation of hair follicle stem cells (HFSCs) and dermal papilla cells (DPCs). Formyl peptide receptor 2 (FPR2) regulates the inflammatory response and the activity of various types of stem cells, and has recently been reported to have a protective effect on hair loss. Given that stem cell activity is the driving force for hair regeneration, we hypothesized that FPR2 influences hair regeneration by mediating HFSC activity. To prove this hypothesis, we investigated the role of FPR2 in hair regeneration using Fpr2 knockout (KO) mice. Fpr2 KO mice were found to have excessive hair loss and abnormal HF structures and skin layer construction compared to wild-type (WT) mice. The levels of Sonic hedgehog (Shh) and β-catenin, which promote HF regeneration, were significantly decreased, and the expression of bone morphogenetic protein (Bmp)2/4, an inhibitor of the anagen phase, was significantly increased in Fpr2 KO mice compared to WT mice. The proliferation of HFSCs and DPCs was significantly lower in Fpr2 KO mice than in WT mice. These findings demonstrate that FPR2 impacts signaling molecules that regulate HF regeneration, and is involved in the proliferation of HFSCs and DPCs, exerting a protective effect on hair loss.

Establishment of Stem-like Cells from Human Umbilical Cord Vein

  • Park, Seah;Kim, Kyung-Suk;Kim, Haekwon;Do, Byung-Rok;Kwon, Hyuck-Chan;Kim, Hyun-Ok;Im, Jung-Ae
    • 한국발생생물학회:학술대회논문집
    • /
    • 한국발생생물학회 2003년도 제3회 국제심포지움 및 학술대회
    • /
    • pp.78-78
    • /
    • 2003
  • Adult stem cells can make identical copies of themselves for long periods of time. They also give rise to many differentiated mature cell types that have characteristic morphology and specialized function. Human adult stem cells are the attractive raw materials for the cell/tissue therapy, however, it is not easy to get from the adult tissues. In the present study, we tried to isolate a cell population derived from human umbilical cord vein which has been discarded after birth. The cells were isolated after treatment of the umbilical vein with collagenase or trypsin. After 3 days of culture, two kinds of cell populations were found consisting of adherent cells with endothelial cell-like and fibroblast-like morphology, respectively. When these cells were subcultured 12 times over a period of 3 months, almost cells appeared uniformly to exhibit fibroblastoid morphology which was different from that of mesenchymal stem cells obtained from human bone marrow The results of RT-PCR analyses showed distinct expression of BMP-4, oct-4, and SCF genes but not of GATA, PAX-6 and Brachyury genes. On immunohistochemical staining, the cells were negative for the von Willebrand factor(vWF), alpha-smooth muscle actin and placental alkaline phosphatase. From these observations, it is suggested that stem-like cells might be present in human umbilical cord vein.

  • PDF

Kalkitoxin attenuates calcification of vascular smooth muscle cells via RUNX-2 signaling pathways

  • Saroj K Shrestha;Se-Woong Kim;Yunjo Soh
    • Journal of Veterinary Science
    • /
    • 제24권5호
    • /
    • pp.69.1-69.11
    • /
    • 2023
  • Background: Kalkitoxin (KT) is an active lipopeptide isolated from the cyanobacterium Lyngbya majuscula found in the bed of the coral reef. Although KT suppresses cell division and inflammation, KT's mechanism of action in vascular smooth muscle cells (VSMCs) is unidentified. Therefore, our main aim was to investigate the impact of KT on vascular calcification for the treatment of cardiovascular disease. Objectives: Using diverse calcification media, we studied the effect of KT on VSMC calcification and the underlying mechanism of this effect. Methods: VSMC was isolated from the 6 weeks ICR mice. Then VSMCs were treated with different concentrations of KT to check the cell viability. Alizarin red and von Kossa staining were carried out to examine the calcium deposition on VSMC. Thoracic aorta of 6 weeks mice were taken and treated with different concentrations of KT, and H and E staining was performed. Real-time polymerase chain reaction and western blot were performed to examine KT's effect on VSMC mineralization. Calcium deposition on VSMC was examined with a calcium deposition quantification kit. Results: Calcium deposition, Alizarin red, and von Kossa staining revealed that KT reduced inorganic phosphate-induced calcification phenotypes. KT also reduced Ca++-induced calcification by inhibiting genes that regulate osteoblast differentiation, such as runtrelated transcription factor 2 (RUNX-2), SMAD family member 4, osterix, collagen 1α, and osteopontin. Also, KT repressed Ca2+-induced bone morphogenetic protein 2, RUNX-2, collagen 1α, osteoprotegerin, and smooth muscle actin protein expression. Likewise, Alizarin red and von Kossa staining showed that KT markedly decreased the calcification of ex vivo ring formation in the mouse thoracic aorta. Conclusions: This experiment demonstrated that KT decreases vascular calcification and may be developed as a new therapeutic treatment for vascular calcification and arteriosclerosis.

Protective effects of remifentanil against H2O2-induced oxidative stress in human osteoblasts

  • Yoon, Ji-Young;Kim, Do-Wan;Kim, Eun-Jung;Park, Bong-Soo;Yoon, Ji-Uk;Kim, Hyung-Joon;Park, Jeong-Hoon
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • 제16권4호
    • /
    • pp.263-271
    • /
    • 2016
  • Background: Bone injury is common in many clinical situations, such as surgery or trauma. During surgery, excessive reactive oxygen species (ROS) production decreases the quality and quantity of osteoblasts. Remifentanil decreases ROS production, reducing oxidative stress and the inflammatory response. We investigated remifentanil's protective effects against $H_2O_2$-induced oxidative stress in osteoblasts. Methods: To investigate the effect of remifentanil on human fetal osteoblast (hFOB) cells, the cells were incubated with 1 ng/ml of remifentanil for 2 h before exposure to $H_2O_2$. For induction of oxidative stress, hFOB cells were then treated with $200{\mu}M$ $H_2O_2$ for 2 h. To evaluate the effect on autophagy, a separate group of cells were incubated with 1 mM 3-methyladenine (3-MA) before treatment with remifentanil and $H_2O_2$. Cell viability and apoptotic cell death were determined via MTT assay and Hoechst staining, respectively. Mineralized matrix formation was visualized using alizarin red S staining. Western blot analysis was used to determine the expression levels of bone-related genes. Results: Cell viability and mineralized matrix formation increased on remifentanil pretreatment before exposure to $H_2O_2$-induced oxidative stress. As determined via western blot analysis, remifentanil pretreatment increased the expression of bone-related genes (Col I, BMP-2, osterix, and $TGF-{\beta}$). However, pretreatment with 3-MA before exposure to remifentanil and $H_2O_2$ inhibited remifentanil's protective effects on hFOB cells during oxidative stress. Conclusions: We showed that remifentanil prevents oxidative damage in hFOB cells via a mechanism that may be highly related to autophagy. Further clinical studies are required to investigate its potential as a therapeutic agent.