• Title/Summary/Keyword: BLDC motor control

Search Result 443, Processing Time 0.024 seconds

Design and Implementation of Oil Pump Control Systems Driven by a Brushless DC Electric Motor (BLDC 모터로 구동되는 오일 펌프 제어 시스템의 설계 및 구현)

  • Kwak, Seong-Woo;Kim, Hyung-Soo;Yang, Jung-Min
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.1
    • /
    • pp.83-90
    • /
    • 2014
  • In this paper, we address the problem of designing and implementing an oil pump control system driven by a brushless DC (BLDC) motor. The proposed oil pump plays the role of providing fuel to the engine clutch and transmission of hybrid vehicles. Main consideration is given to enhancing response feature and accuracy of the oil pump by simplifying the controller that is driven by a BLDC motor under PWM voltage control, which is a standard control method for BLDC motors. The proposed control scheme also helps to increase efficiency and reliability of the oil pump system. To validate the performance of the proposed system, we conduct experiments on BLDC motor speed control and oil pump operations.

7-Phase BLDC Motor Drive System using MSTC (MSTC를 이용한 7상 BLDC 모터 구동시스템)

  • 전윤석
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.429-433
    • /
    • 2000
  • Recently the demand of motor for industrial household machinery is increasing. As Switching devices and control technology are progressing so the use of BLDC Motor is increasing But 3-Phase BLDC Motor generally used has pulsating torque and speed variation in commutation so the range of it's application is limited high speed application Especially to solve these problems it is necessary to increase phase to Motor so study of Poly-Phase BLDC Motor is progressing. In this paper we designed 7-Phase BLDC Motor drive system and MSTC(Minimum Switching Time Controller)

  • PDF

Implementation of binary position controller with continuous inertial external loop for BLDC motor (브러시 없는 직류전동기를 위한 연속관성형 외부루프를 갖는 바이너리제어기의 구현)

  • 김영조;김영석
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.1
    • /
    • pp.60-66
    • /
    • 1996
  • Brushless DC(BLDC) motor have been increasingly used in machine tools and robotics applications due to the reliability and the efficiency. In control of BLDC motor, it is important to construct the controller which is robust to parameter variations and external disturbances. Variable structure controller(VSC) has been known as a powerful tool in robust control of time varying systems. In practical systems, however, VSC has a high frequency chattering which deteriorates system performances. In this paper, a binary controller(BC) which takes the form of VSC and MRAC combined is presented to solve this problem. BC consists of the primary loop controller and the external loop controller to change the gain of primary loop controller smoothly. So it can generate the continuous control input and is insensitive to parameter variations in the given domain. To confirm the validity, various investigations of control characteristics for various design parameters in a position control system of BLDC motor are carried out. (author). 11 refs., 18 figs., 1 tab.

  • PDF

Development of Controller for MPB BLDC Motor (MPB BLDC 전동기의 제어기 개발)

  • 김상욱;김보열
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.50 no.3
    • /
    • pp.117-124
    • /
    • 2001
  • The aim of this paper is to develop a controller of multi-phase bipolar brushless DC (MPB BLDC) motors for an electric bicycle. A MPB BLDC motor has a Permanent magnet rotor in which the magnetic arrangement is radial to the shaft and integral to the rotor laminations. This technique concentrates flux, giving a higher flux density than a surface-mounted PM motor and increases reluctance torque. The stator of MPB BLBC motor has parallel winding, allowing multi-phase separate independent controllability. It gets much more high power than wye-connection at same low voltage. The conventional techniques of exited with modulation(EWM), bidirection control, and partial square wale control are Proposed with one H-bridge and two photo sensors per phase. The Proposed controller is satisfied for the limited speed control and designed for system stability Experimental results show the performance of the proposed controller of MPB BLDC motors for an electric bicycle.

  • PDF

Speed Control of Permanent Magnet Brushless DC Motor using Variable Gain PI Controller (가변이득 PI 제어기를 이용한 BLDC 모터의 속도제어)

  • Yun, Si-Young;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1234-1239
    • /
    • 2013
  • This paper provides a technical review of speed control using variable gain PI algorithm for BLDC(Brushless DC) motor. Usually the PI control is used in many motor applications, but a general PI control has problems of overshooting and disturbance for response. By the change of PI gain in motor control operation, these problems can be solved. To find the optimized PI gains for BLDC motor control, many control methods have been proposed. In this paper, the control algorithm with a variable PI gain is applied to improve overshooting response in transient region and rapid load disturbance rejection. Fixed gain and variable gain PI controls are compared. The validity of the propose method is verified by experiment.

The Performance Evaluation and the Design of Controller for the Highly Efficient BLDC Motor using Numerical Analysis (수치해석에 의한 고효율 BLDC 모터의 제어기 설계 및 성능평가에 관한 연구)

  • Woo, Chun-Hee;Park, Gun-Sik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.2
    • /
    • pp.62-66
    • /
    • 2006
  • This thesis focuses on the design of control schemes for highly efficient BLDC motor drive applications using drives with output capacity of 1Hp. The control system was designed and implemented on a PIC micro-controller and applied to an electric vehicle as a viable replacement to the existing a high phase induction motor that is currently being used for these low cost, small traction drive applications. This paper for the brushless drive research has shown the optimization of the drive system for improved drive design and switching techniques that can improve the entire drive system efficiency for electric vehicle both large and small traction applications using sinusoidal PWM techniques for synthesizing the AC waveforms needed to control these traction drives. In addition, Numerical simulation was conducted to evaluate the performance of designed BLDC Motor using MotorPro simulator.

Autonomous Underwater Vehicles with Modeling and Analysis of 7-Phase BLDC Motor Drives

  • Song, Sang-Hoon;Yoon, Yong-Ho;Lee, Byoung-Kuk;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.932-941
    • /
    • 2014
  • In this paper, a simulation model for 7-phase BLDC motor drives for an Autonomous Underwater Vehicles (AUV) is proposed. A 7-phase BLDC motor is designed and the electrical characteristics are analyzed using FEA program and the power electronics drives for the 7-phase BLDC motor are theoretically analyzed and the actual implementation has been accomplished using Matlab Simulink. PI controller and fuzzy controller are compared for verifying the validity of the proposed model and the informative results are described in detail. Especially A fuzzy controller is used to characterize 7-phase BLDC motor, drive systems under normal and fault operating conditions.

Modeling of BLDC Motor Driving System for Platform Screen Door Control applied Fuel Cell Power Generation System (연료전지 발전시스템을 이용한 승강장 스크린 도어 제어용 BLDC 전동기 구동 모델링)

  • Yoon, Yong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.6
    • /
    • pp.968-974
    • /
    • 2017
  • In this paper, modeling of brushless DC motor (BLDC) driving system for platform screen door control applied fuel cell power generation system has been proposed. At first the system configuration and operational principle of the developed fuel cell simulator has been investigated and the design of BLDC motor driving system is studied and the overall performance and dynamics of the proposed system could be effectively examined by simulation. PSIM simulation program is implemented to verify the performance and compatibility of the fuel cell power generation system and BLDC motor control system modeling.

PSO-Based Optimal PI(D) Controller Design for Brushless DC Motor Speed Control with Back EMF Detection

  • Kiree, Chookiat;Kumpanya, Danupon;Tunyasrirut, Satean;Puangdownreong, Deacha
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.715-723
    • /
    • 2016
  • This paper proposes a design of optimal PI(D) controller for brushless DC (BLDC) motor speed control by the particle swarm optimization (PSO), one of the powerful metaheuristic optimization search techniques. The proposed control system is implemented on the TMS320F28335 DSP board interfacing to MATLAB/SIMULINK. With Back EMF detection, the proposed system is considered as a class of sensorless control. This scheme leads to the speed adjustment of the BLDC motor by PWM. In this work, the BLDC motor of 100 watt is conducted to investigate the control performance. As results, it was found that the speed response of BLDC motor can be regulated at the operating speed of 800 and 1200 rpm in both no load and full load conditions. Very satisfactory responses of the BLDC system can be successfully achieved by the proposed control structure and PSO-based design approach.

Design of Brushless DC Motor Speed Control System for Handpieces (핸드피스용 BLDC 모터 속도 제어시스템의 설계)

  • Kwak, Seong-Woo;Yang, Jung-Min
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.6
    • /
    • pp.597-604
    • /
    • 2016
  • In this paper, we develope a speed control system of a BLDC motor for handpieces used in beauty applications. To reduce implementation cost, the control system utilizes hall sensors embedded in BLDC motors for speed estimation. The developed power module of a motor uses only 220V home voltage, so that the control system does not need any other power sources. An over-speed limit controller is also developed to slow down a motor when the speed goes up rapidly for a moment upon some heavy load is removed. The control system is designed to operate a handpiece with speed in the range of 5,000~30,000 RPM. Experiment results show the validity of the developed system, which maintains the speed of a motor steady even though a load is varied.