• Title/Summary/Keyword: BLAST search

Search Result 213, Processing Time 0.023 seconds

Identification of Differentially Expressed Genes Between Somatic Cell Nuclear Transfer and Normal Placenta in Cattle (소의 체세포핵이식태반과 정상태반간의 차등 발현 유전자 분석)

  • Yu, Seong-Lan;Jeong, Hang-Jin;Sang, Byung-Chan;Ryoo, Seung-Heui;Jung, Kie-Chul;Yoon, Jong-Taek;Seong, Hwan-Hoo;Jin, Dong-Il;Lee, Jun-Heon
    • Journal of Animal Science and Technology
    • /
    • v.50 no.5
    • /
    • pp.641-648
    • /
    • 2008
  • There has been great success for making transgenic animals using somatic cell nuclear transfer(SCNT) up to this time. However, the success rates of the production of live transgenic animals are still very low. The current research has been carried out for delineation of differentially expressed genes between SCNT and normal placenta in cattle. In the present observations, high expression has been observed for CTSZ, LOC509426 and ELF1 genes in normal placenta. On the other hand, TIMP2, PAG1B, PAG-21, LOC782894, SERPINB6 and mKIAA2025 protein were highly expressed in SCNT placenta. Five genes, which were highly expressed in SCNT placenta, have been further investigated using semi-quantitative real-time PCR. The results were similar to that we observed using ACP. In the future, all genes affecting the SCNT and normal placenta have to be discovered and their networks will be fully investigated. The genes were identified in this study would be great help for identifying differential gene expressions in SCNT placenta.

Genes of Wild Rice (Oryza grandiglumis) Induced by Wounding and Yeast Extract (상처와 효모추출물 처리조건에서 유발되는 야생벼 유전자 스크린)

  • Shin, Sang-Hyun;Im, Hyun-Hee;Lee, Jai-Heon;Kim, Doh-Hoon;Chung, Won-Bok;Kang, Kyung-Ho;Cho, Sung-Ki;Shin, Jeong-Sheop;Chung, Young-Soo
    • Journal of Life Science
    • /
    • v.14 no.4
    • /
    • pp.650-656
    • /
    • 2004
  • Oryza grandiglumis (CCDD, 2n=48), one of the wild rice species, has been known to possess fungal-,bacterial-, and insect-resistance against sheath blight, rice blast, bacterial leaf blight and brown plant hopper (Nilaparvata lugens). To rapidly isolate differentially expressed genes responding to fungal and wounding stress, wounding and yeast extract were treated to O. grandiglumis for 24 hrs. Suppression subtractive hybridization (SSH) method was used to obtain differentially expressed genes from yeast extract and wounding treated plants. Seven hundreds and seventy six clones were obtained by subcloning PCR product, and colony array and screening were carried out using radio-isotope labeled cDNA probes prepared from the wounding and yeast extract treated plants. One hundred and fifteen colonies were confirmed as true positive ones. Average insert size of the clones were ranged from 400 bp to 700 bp and all the inserts were sequenced. To decide the identity of those clones, sequences were analyzed by sequence homology via GenBank database. The homology search result showed that 68 clones were matched to the genes with known function; 16 were related to primary metabolism, 5 to plant retrotransposons, 5 to defense related metallothionein-like genes. In addition to that, others were matched to various genes with known function in amino acid synthesis and processing, membrane transport, and signal transduction, so on. In northern blot analysis, induced expressions of ogwfi-161, ogwfi-646, ogwfi-663, and ogwfi-695 by wounding and yeast extract treatments were confirmed. The result indicates that SSH method is very efficient for rapid screening of differentially expressed genes.

Isolation and Characterization of Tartaric Acid-Degrading Bacteria from Korean Grape Wine Pomace (국산 포도주 주박으로부터 주석산 분해 세균의 분리 및 특성)

  • Kim, Jong-Hyun;Choi, Sang-Hoon;Hong, Young-A;Kim, Dong-Hwan;Lee, Won-Hee;Rhee, Chang-Ho;Park, Heui-Dong
    • Food Science and Preservation
    • /
    • v.15 no.3
    • /
    • pp.483-490
    • /
    • 2008
  • Several tartaric acid-degrading bacteria were isolated from Korean grape wine pomace after enrichment culture at $30^{\circ}C$ for 10 days in liquid media containing tartaric acid Among them, strains KMBL 5777 and KMBL 5778 exhibited the highest level in the growth and tartaric acid degradability in a medium containing 0.2%(w/v) tartaric acid as a sole carbon source. They were identified as Acetobacter tropicalis based on their morphological and physiological characteristics as well as their 16S rDNA sequences. Blast search of the 16S rDNA sequences revealed that the isolated strains are closest to Acetobacter tropicalis. Homologies of the sequences of KMBL 5777 and KMBL 5778 were 96.0 and 98.9%, respectively with those of A. tropicalis LMG 1663. Both the two bacteria showed higher tartaric acid degradation at $25^{\circ}C$ that those at 20 and $30^{\circ}C$. They could degrade tartaric acid at a wide range of pH between 4.0 and 7.0 with the most rapid degradability at pH 7.0. However, when the bacteria were grown for 8 days, the same level of tartaric acid degradation was observed at pH 4.0, 5.0, 6.0 and 7.0, which was 90.0% of degradation of the acid.