• 제목/요약/키워드: BIOMECHANICAL

검색결과 947건 처리시간 0.029초

당뇨발을 위한 생체역학적 치료방법들에 관한 고찰 (A Review of Biomechanical Treatments for the Diabetic Foot)

  • 고은경;정도영
    • The Journal of Korean Physical Therapy
    • /
    • 제19권5호
    • /
    • pp.51-63
    • /
    • 2007
  • Diabetic foot ulcers result from abnormal mechanical loading of the foot, such as repetitive pressure applied to the plantar aspect of the foot while walking. Diabetic peripheral neuropathy causes changes in foot structure, affecting foot function and subsequently leading to increased plantar foot pressure, which is a predictive risk factor for the development of diabetic foot ulceration. To early identify the insensitive foot makes it possible to prevent diabetic foot ulceration and to protect the foot at risk from abnormal biomechanical loading. Abnormal foot pressures can be reduced using several different approaches, including callus debridement, prescription of special footwear, foot orthosis. injection of liquid silicone, Achilles tendon lengthening, and so forth. Off-loading of the diabetic wound is a key factor to successful wound healing as it is associated with reduced inflammatory and accelerated repair processes. Pressure relief can be achieved using various off-loading modalities including accommodative dressing, walking splints, ankle-foot orthosis, total contact cast, and removable and irremovable cast walkers.

  • PDF

검도 머리치기 동작의 인체 근골격 모델개발 및 응력해석 (Development on Human Muscle Skeletal Model and Stress Analysis of Kumdo Head Hitting Motion)

  • 이중현;이세훈;이영신
    • 한국정밀공학회지
    • /
    • 제24권11호
    • /
    • pp.116-125
    • /
    • 2007
  • Human muscle skeletal model was developed for biomechanical study. The human model was consists with 19 bone-skeleton and 122 muscles. Muscle number of upper limb, trunk and lower limb part are 28, 60, 34 respectively. Bone was modeled with 3D beam element and muscle was modeled with spar element. For upper limb muscle modelling, rectus abdominis, trapezius, deltoideus, biceps brachii, triceps brachii muscle and other main muscles were considered. Lower limb muscle was modeled with gastrocenemius, gluteus maximus, gluteus medius and related muscles. The biomechanical stress and strain analysis of human was conducted by proposed finite element analysis model under Kumdo head hitting motion. In this study structural analysis has been performed in order to investigate the human body impact by Kumdo head hitting motion. As the results, the analytical displacement, stress and strain of human body are presented.

Biomechanical Differences of Lower Extremity Joints at the Frontal Plane during Sidestep Cutting in Male and Female Judo Athletes

  • Yun, Hyun
    • 한국응용과학기술학회지
    • /
    • 제35권1호
    • /
    • pp.55-61
    • /
    • 2018
  • The purpose of this study was to analyze the biomechanical differences of lower extremity joints of the frontal plane during sidestep cutting in male and female Judo athletes. In the knee and hip joint, the female group showed a smaller angle than the male group at the time of IC(initial contact). But peak knee joint adduction moment of female group was greater than male group(p<.05). Therefore, female Judo athletes were more likely to injure their knees at the point where their initial foot contacted the ground than male athletes during sidestep cutting.

Biomechanical Analysis of Human Balance Control

  • Shin, Youngkyun;Park, Gu-Bum
    • 조명전기설비학회논문지
    • /
    • 제28권3호
    • /
    • pp.63-71
    • /
    • 2014
  • A single-inverted-pendulum model is presented to simulate and predict the passive response of human balance control. This simplified biomechanical model was comprised of a torsional spring and damper, and a lump mass. An estimation of frequency response function was conducted to parameterize the complexity. The frequency domain identification method is used to identify the parameters of the model. The equivalent viscoelastic parameters of standing body were obtained and there was good conformity between the simulation and experimental result.

자동차 조립 작업에서의 직업성 요추부염좌의 위험도에 대한평가 (An Evaluation of Automobile Assembly Jobs for Low Back Injury)

  • 박동현;허국강
    • 한국산업보건학회지
    • /
    • 제10권2호
    • /
    • pp.40-52
    • /
    • 2000
  • The aim of this study was to evaluate the prevailing ergonomic conditions regarding low back injury in an assembly factory, In this study, analytic biomechanical model and NIOSH guidelines were applied to evaluate risk levels of low back injury for automobile assembly jobs. Total of 246 workers were analysed. There were 10 jobs with greater back compressive forces than 350kg at L5/S1. Also there were 44 jobs over Action Limit in terms of 1981 NIOSH guidelines. This could in part be explained by the ergonomic conditions of the companys analysed as not hazardous, with a relatively low duration of 'combined' extreme work posture. However, more ergonomic intervention could be done based on those results.

  • PDF

유니사이클 로봇의 주행경로를 변경하기 위한 퍼지룰의 구성

  • 김중완;안찬우;전언찬;한근조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.761-765
    • /
    • 1997
  • Our study of rider's postulator stability and tracking control on a unicycle began form the observation of a human riding. The system including unicycle and human operationg his unicycle is a fuzzy intelligent biomechanical model on basis of instinct and intuition search mechanisms. We proposed a robotic unicycle with one wheel and one body as a basic mode and derived equation of motion to this model. Our works is in making out fuzzy look-up table to control robotic unicycle. Fuzzy look-up table were determined for staight line and curve under reasonable inference emulating human's instinct and intuition riding a unicyale. Simulation results show that postulator stability and tracking control on both straight line and curve were successful by using proposed each fuzzy look-up table.

  • PDF

Voxel mesh 기법을 이용한 하악골의 유한요소모델링 (Finite element modeling of the mandible using voxel mesh method)

  • 이은택;오택열;변창환;이병권;유용석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.600-604
    • /
    • 1997
  • Knowledge of the complex biomechanical behavior of the human mandible is of great importance in various clinical situations. Various approaches can be used to evaluate the physical behavior of bone. In this study, we developed the voxel mesh program(Bionix) and generated FE models of mandible using Bionix and using handmade work and compared them with free vibration results derived from finite element analysis(FEA). The data of FE models based on DICOM File exported from Computed tomography(CT). Comparing the two models, we found a good correlation about mode type and natural frequency. The voxel based finite element mesh is a valid and accurate method to predict parameters of the complex biomechanical behavior of human mandibles.

  • PDF

성인 대퇴골두 제 1압박 골소주군의 미세구조와 생역학적 특성의 상관관계 및 유한요소해석법의 유용성 평가 (Evaluation of the Usefulness of Finite Element Analysis and Statistical Correlation of Micro-structural and Biomechanical Property of the Primary Compressive Trabecular System In Adult Femur)

  • 백명현;원예연;최문권;윤태봉
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 추계학술대회 논문집
    • /
    • pp.555-556
    • /
    • 2006
  • PDF

무릎 관절의 생역학적 이해 (Biomechanical Comprehension of Knee Joint)

  • 권영실;이진희;정병옥;배성수;김진상
    • The Journal of Korean Physical Therapy
    • /
    • 제11권1호
    • /
    • pp.167-177
    • /
    • 1999
  • Biomechanics is an important scientific foundation of physical therapy and is used to relate kinematics, kinetics, statics and dynamics for comprehencing human movement. The knee is well studied for demonstrating biomechanical analyses of joint because of its simplicity. The purposes of this study were 1)to provide categories and concepts of biomechanics, 2) to apply these concepts to knee movement involving daily living and gait, and 3) to review current and preceeding researches about biomechanics of knee. Thus, physical therapiestes in clinic may be helped understand of movement which includes considerations of description and production related force, moment and power.

  • PDF

Biomechanical Analysis with the Force of Deltoid Muscle for Pianist

  • Shin, Dong-Ok;La, Seung-Houn
    • International Journal of Safety
    • /
    • 제4권1호
    • /
    • pp.27-31
    • /
    • 2005
  • This study presents the relationship between the height of the chair and the force of deltoid muscle for pianist. The subject simulated playing the piano on the three different heights of the chairs. Digital camera was used to determine the angle of the joint of shoulder and elbow for 2-dimensional static link segment modeling in the sagittal plane. The deltoid, biceps and triceps muscles were considered to determine the muscle load. The results, compared to the force of deltoid muscle, are that the downward position of the higher chair produces significantly large force than the other two lower chairs. It can be caused by hunched shoulder with decreasing deltoid angle. In case of the upward position caused by the lower chair, even though the smallest force of deltoid presented, it was increased the force of elbow.