• 제목/요약/키워드: BIOENGINEERING AND TECHNOLOGY

검색결과 1,386건 처리시간 0.03초

알로에 겔 마이크로캡슐의 고농도 현탁액의 제조 및 특성 (Preparation and Characterization of Dense Suspension of Aloe Gel Microcapsule)

  • 고남경;이진실;이신영;허원
    • 대한화장품학회지
    • /
    • 제39권1호
    • /
    • pp.47-54
    • /
    • 2013
  • 알로에 겔이 분산된 W/O 에멀젼을 감압 건조하는 방법으로 분산상의 수분을 제거하여 알로에 겔 마이크로캡슐을 제조하였다. 마이크로캡슐은 미네랄오일로 세척하고 재현탁시켜 유화제를 제거한 후에도 안정적인 현탁액으로 유지되었으며, 내부가 균일하게 채워진 직경 6.6 ${\mu}m$ 이하인 구형 입자로 구성되어 있었다. 미네랄오일에 재현탁된 마이크로캡슐은 분율이 41% 이상에서 급격하게 점도가 증가하였고, 300 Pa 이상의 항복응력을 가진 전단유동화 특성을 나타내었으나, 틱소트로피는 뚜렷하게 관찰되지 않는 유변학적인 특성을 보였다. 오일에 현탁된 알로에 겔 마이크로캡슐의 분율이 높을수록 반고체의 특성이 증가하고 $105^{\circ}C$에서 15 min 동안 가열하여도 에멀젼의 안정성이 유지됨을 경시적으로 관찰하였다. 따라서 알로에 겔 마이크로캡슐 현탁 크림을 기본 제형으로 다양한 종류의 알로에 겔 화장품의 개발이 가능할 것으로 예상된다.

The High Production of Multimeric Angiotensin-converting-enzyme-inhibitor in E. coli

  • Park Je-Hyoen;Kim Sun-Hoi;Ahn Sun-Hee;Lee Jong-Hee;Kim Young-Sook;Lee Sang-Jun;Kong In-Soo
    • Fisheries and Aquatic Sciences
    • /
    • 제4권2호
    • /
    • pp.84-87
    • /
    • 2001
  • Multimeric angiotensin-converting-enzyme-inhibitor (ACE}) containing a trypsin cleavable linker peptide between ACEI was constructed. We made synthetic DNA coding for the ACEI peptide with asymmetric and complementary cohesive ends of linker nucleotides. A tandemly repeated DNA cassette for the expression of concatameric short peptide multimers was constructed by ligating the basic units. The resultant multimeric peptide expressed as soluble and trypsin treated peptide was shown at the same retention time with chemically synthetic ACEI by HPLC. The present results showed that the technique developed for the production of the ACEI multimers with trypsin cleavable linker peptides can be generally applicable to the production of short peptide.

  • PDF

Metabolic profiling reveals an increase in stress-related metabolites in Arabidopsis thaliana exposed to honeybees

  • Baek, Seung-A;Kim, Kil Won;Kim, Ja Ock;Kim, Tae Jin;Ahn, Soon Kil;Choi, Jaehyuk;Kim, Jinho;Ahn, Jaegyoon;Kim, Jae Kwang
    • Journal of Applied Biological Chemistry
    • /
    • 제64권2호
    • /
    • pp.141-151
    • /
    • 2021
  • Insects affect crop harvest yield and quality, making plant response mechanisms to insect herbivores a heavily studied topic. However, analysis of plant responses to honeybees is rare. In this study, comprehensive metabolic profiling of Arabidopsis thaliana exposed to honeybees was performed to investigate which metabolites were changed by the insect. A total of 85 metabolites-including chlorophylls, carotenoids, glucosinolates, policosanols, tocopherols, phytosterols, β-amyrin, amino acids, organic acids, sugars, and starch-were identified using high performance liquid chromatography, gas chromatography-mass spectrometry, and gas chromatography-time-of-flight mass spectrometry. The metabolite profiling analysis of Arabidopsis exposed to honeybees showed higher levels of stress-related metabolites. The levels of glucosinolates (glucoraphanin, 4-methoxyglucobrassicin), policosanols (eicosanol, docosanol, tricosanol, tetracosanol), tocopherols (β-tocopherol, γ-tocopherol), putrescine, lysine, and sugars (arabinose, fructose, glucose, mannitol, mannose, raffinose) in Arabidopsis exposed to honeybees were higher than those in unexposed Arabidopsis. Glucosinolates act as defensive compounds against herbivores; policosanols are components of plant waxes; tocopherols act as an antioxidant; and putrescine, lysine, and sugars contribute to stress regulation. Our results suggest that Arabidopsis perceives honeybees as a stress and changes its metabolites to overcome the stress. This is the first step to determining how Arabidopsis reacts to exposure to honeybees.

Biosynthesis of Xylobiose: A Strategic Way to Enrich the Value of Oil Palm Empty Fruit Bunch Fiber

  • Lakshmi, G. Suvarna;Rajeswari, B. Uma;Prakasham, R.S.
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권8호
    • /
    • pp.1084-1091
    • /
    • 2012
  • Xylooligosaccharides are functional foods mainly produced during the hydrolysis of xylan by physical, chemical, or enzymatic methods. In this study, production of xylobiose was investigated using oil palm empty fruit bunch fiber (OPEFB) as a source material, by chemical and enzymatic methods. Xylanase-specific xylan hydrolysis followed by xylobiose production was observed. Among different xylanases, xylanase from FXY-1 released maximum xylobiose from pretreated OPEFB fiber, and this fungal strain was identified as Aspergillus terreus and subsequently deposited under the accession Number MTCC- 8661. The imperative role of lignin on xylooligosaccharides enzymatic synthesis was exemplified with the notice of xylobiose production only with delignified material. A maximum 262 mg of xylobiose was produced from 1.0 g of pretreated OPEFB fiber using FXY-1 xylanase (6,200 U/ml) at pH 6.0 and $45^{\circ}C$. At optimized environment, the yield of xylobiose was improved to 78.67 g/100 g (based on xylan in the pretreated OPEFB fiber).

Structural Characteristics of Immunostimulating Polysaccharides from Lentinus edodes

  • Lee, Hee-Hwan;Lee, Jong-Seok;Cho, Jae-Yeol;Kim, Young-Eon;Hong, Eock-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권5호
    • /
    • pp.455-461
    • /
    • 2009
  • There is a significant amount of experimental evidence suggesting that polysaccharides from mushrooms enhance the host immune system by activating various mechanisms in immune cells, including macrophages. In this study, polysaccharides from Lentinus edodes were found to stimulate the functional activation of macrophages to secrete inflammatory mediators and cytokines and increase the phagocytotic uptake. The chemical properties of the stimulatory polysaccharides, CPFN-G-I, CPBN-G, and CPBA-G, were determined based on their monosaccharide composition, which mainly consisted of glucose and mannose. According to FT-IR and GC/MS, the structure of CPFN-G-I, purified from the fruiting body of L. edodes, was found to consist of a $\beta$-1,6-branched-$\beta$-1,4-glucan, whereas CPBN-G and CPBA-G, purified from the liquid culture broth, were found to be composed of a heteromannan. The configuration of the p-linkage and triple helical conformation of each polysaccharide were confirmed using a Fungi-Fluor kit and Congo red, respectively.