• Title/Summary/Keyword: BIOCLIMATIC MODEL

Search Result 16, Processing Time 0.027 seconds

Inclusion of bioclimatic variables in genetic evaluations of dairy cattle

  • Negri, Renata;Aguilar, Ignacio;Feltes, Giovani Luis;Machado, Juliana Dementshuk;Neto, Jose Braccini;Costa-Maia, Fabiana Martins;Cobuci, Jaime Araujo
    • Animal Bioscience
    • /
    • v.34 no.2
    • /
    • pp.163-171
    • /
    • 2021
  • Objective: Considering the importance of dairy farming and the negative effects of heat stress, more tolerant genotypes need to be identified. The objective of this study was to investigate the effect of heat stress via temperature-humidity index (THI) and diurnal temperature variation (DTV) in the genetic evaluations for daily milk yield of Holstein dairy cattle, using random regression models. Methods: The data comprised 94,549 test-day records of 11,294 first parity Holstein cows from Brazil, collected from 1997 to 2013, and bioclimatic data (THI and DTV) from 18 weather stations. Least square linear regression models were used to determine the THI and DTV thresholds for milk yield losses caused by heat stress. In addition to the standard model (SM, without bioclimatic variables), THI and DTV were combined in various ways and tested for different days, totaling 41 models. Results: The THI and DTV thresholds for milk yield losses was THI = 74 (-0.106 kg/d/THI) and DTV = 13 (-0.045 kg/d/DTV). The model that included THI and DTV as fixed effects, considering the two-day average, presented better fit (-2logL, Akaike information criterion, and Bayesian information criterion). The estimated breeding values (EBVs) and the reliabilities of the EBVs improved when using this model. Conclusion: Sires are re-ranking when heat stress indicators are included in the model. Genetic evaluation using the mean of two days of THI and DTV as fixed effect, improved EBVs and EBVs reliability.

Assessment of Potential Distribution Possibility of the Warm-Temperate Woody Plants of East Asia in Korea (한국에서 동아시아 난대 목본식물의 잠재분포 가능성 평가)

  • Cheolho, Lee;Hwirae, Kim;Kang-Hyun, Cho;Byeongki, Choi;Bora, Lee
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.4
    • /
    • pp.269-281
    • /
    • 2022
  • The prediction of changes regarding the distribution of vegetation and plant species according to climate changes is important for ecosystem management. In this study, we attempted to develop an assessment method to evaluate the possibility of the potential distribution of warm-temperate woody plant species of East Asia in Korea. To begin with, a list of warm-temperate woody plants distributed in China and Japan, but not in Korea, was prepared, and a database consisting their global distribution and bioclimatic variables was constructed. In addition, the warm-temperate vegetation zone in Korea was delineated using the coldness index and relevant bioclimatic data were collected. After the exclusion of multicollinearity among bioclimatic variables using correlation analysis, mean temperature of the coldest quarter, mean temperature diurnal range, and annual precipitation were selected as the major variables that influence the distribution of warm-temperate plants. A multivariate environment similarity surfaces (MESS) analysis was conducted to calculate the similarity scores between the distribution of these three bioclimatic variables in the global distribution sites of the East Asian warm-temperate woody plants and the Korean warm-temperate vegetation zone. Finally, using stepwise variable-selection regression, the mean temperature of the coldest quarter and annual precipitation were selected as the main bioclimatic variables that affect the MESS similarity index. The mean temperature of the coldest quarter accounted for 88% of the total variance. For a total of 319 East Asian warm-temperate woody plant species, the possibility of their potential distribution in Korea was evaluated by applying the constructed multivariate regression model that calculates the MESS similarity index.

Modeling the Present Probability of Urban Woody Plants in the face of Climate Change (기후변화에 따른 도시 수종의 기후 적합성 평가모델 - 서울시를 대상으로 -)

  • Kim, Yoon-Jung;Lee, Dong-Kun;Park, Chan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.1
    • /
    • pp.159-170
    • /
    • 2013
  • The effect of climate change on urban woody plants remains difficult to predict in urban areas. Depending on its tolerances, a plant species may stay and survive or stay with slowly declining remnant populations under a changing climate. To predict those vulnerabilities on urban woody plants, this study suggests a basic bioclimatic envelop model of heat requirements, cold tolerance, chilling requirements and moisture requirements that are well documented as the 'climatic niche'. Each component of the 'climatic niche' is measured by the warmth index, the absolute minimum temperature, the number of chilling weeks and the water balance. Regarding the utility of the developed model, the selected urban plant's present probabilities are suggested in the future climate of Seoul. Both Korea and Japan's thermal thresholds are considered for a plant's optimal climatic niche. By considering the thermal thresholds of these two regions for the same species, the different responses observed will reflect the plant's 'hardening' process in a rising climate. The model illustrated that the subpolar plants Taxus cuspidata and Ulmus davidiana var. japonica are predicted to have low suitability in Seoul. The temperate plants Zelkova serrata and Pinus densiflora, which have a broad climatic niche, exhibited the highest present probability in the future. The subtropical plants Camellia japonica and Castanopsis cuspidata var. sieboldii may exhibit a modest growth pattern in the late 21C's future climatic period when an appropriate frost management scheme is offered. The model can be used to hypothesize how urban ecosystems could change over time. Moreover, the developed model can be used to establish selection guidelines for urban plants with high levels of climatic adaptability.

Modeling the Spatial Distribution of Black-Necked Cranes in Ladakh Using Maximum Entropy

  • Meenakshi Chauhan;Randeep Singh;Puneet Pandey
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.4 no.2
    • /
    • pp.79-85
    • /
    • 2023
  • The Tibetan Plateau is home to the only alpine crane species, the black-necked crane (Grus nigricollis). Conservation efforts are severely hampered by a lack of knowledge on the spatial distribution and breeding habitats of this species. The ecological niche modeling framework used to predict the spatial distribution of this species, based on the maximum entropy and occurrence record data, allowed us to generate a species-specific spatial distribution map in Ladakh, Trans-Himalaya, India. The model was created by assimilating species occurrence data from 486 geographical sites with 24 topographic and bioclimatic variables. Fourteen variables helped forecast the distribution of black-necked cranes by 96.2%. The area under the curve score for the model training data was high (0.98), indicating the accuracy and predictive performance of the model. Of the total study area, the areas with high and moderate habitat suitability for black-necked cranes were anticipated to be 8,156 km2 and 6,759 km2, respectively. The area with high habitat suitability within the protected areas was 5,335 km2. The spatial distribution predicted using our model showed that the majority of speculated conservation areas bordered the existing protected areas of the Changthang Wildlife Sanctuary. Hence, we believe, that by increasing the current study area, we can account for these gaps in conservation areas, more effectively.

Predicting the Invasion Potential of Pink Muhly (Muhlenbergia capillaris) in South Korea

  • Park, Jeong Soo;Choi, Donghui;Kim, Youngha
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.1 no.1
    • /
    • pp.74-82
    • /
    • 2020
  • Predictions of suitable habitat areas can provide important information pertaining to the risk assessment and management of alien plants at early stage of their establishment. Here, we predict the invasion potential of Muhlenbergia capillaris (pink muhly) in South Korea using five bioclimatic variables. We adopt four models (generalized linear model, generalized additive model, random forest (RF), and artificial neural network) for projection based on 630 presence and 600 pseudo-absence data points. The RF model yielded the highest performance. The presence probability of M. capillaris was highest within an annual temperature range of 12 to 24℃ and with precipitation from 800 to 1,300 mm. The occurrence of M. capillaris was positively associated with the precipitation of the driest quarter. The projection map showed that suitable areas for M. capillaris are mainly concentrated in the southern coastal regions of South Korea, where temperatures and precipitation are higher than in other regions, especially in the winter season. We can conclude that M. capillaris is not considered to be invasive based on a habitat suitability map. However, there is a possibility that rising temperatures and increasing precipitation levels in winter can accelerate the expansion of this plant on the Korean Peninsula.

Climate Change Impact Assessment of Abies nephrolepis (Trautv.) Maxim. in Subalpine Ecosystem using Ensemble Habitat Suitability Modeling (서식처 적합모형을 적용한 고산지역 분비나무의 기후변화 영향평가)

  • Choi, Jae-Yong;Lee, Sang-Hyuk
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.1
    • /
    • pp.103-118
    • /
    • 2018
  • Ecosystems in subalpine regions are recognized as areas vulnerable to climatic changes because rainfall and the possibility of flora migration are very low due to the characteristics of topography in the regions. In this context, habitat niche was formulated for representative species of arbors in subalpine regions in order to understand the effects of climatic changes on alpine arbor ecosystems. The current potential habitats were modeled as future change areas according to the climatic change scenarios. Based on the growth conditions and environmental characteristics of the habitats, the study was conducted to identify direct and indirect causes affecting the habitat reduction of Abies nephrolepis. Diverse model algorithms for explanation of the relationship between the emergence of biological species and habitat environments were reviewed to construct the environmental data suitable for the six models(GLM, GAM, RF, MaxEnt, ANN, and SVM). Weights determined through TSS were applied to the six models for ensemble in an attempt to minimize the uncertainty of the models. Based on the current climate determined by averaging the climates over the past 30years(1981~2010) and the HadGEM-RA model was applied to fabricate bioclimatic variables for scenarios RCP 4.5 and 8.5 on the near and far future. The results of models of the alpine region tree species studied were put together and evaluated and the results indicated that a total of eight national parks such as Mt. Seorak, Odaesan, and Hallasan would be mainly affected by climatic changes. Changes in the Baekdudaegan reserves were analyzed and in the results, A. nephrolepis was predicted to be affected the most in the RCP8.5. The results of analysis as such are expected to be finally utilizable in the survey of biological species in the Korean peninsula, restoration and conservation strategies considering climatic changes as the analysis identified the degrees of impacts of climatic changes on subalpine region trees in Korean peninsula with very high conservation values.

Analysis and estimation of species distribution of Mythimna seperata and Cnaphalocrocis medinalis with land-cover data under climate change scenario using MaxEnt (MaxEnt를 활용한 기후변화와 토지 피복 변화에 따른 멸강나방 및 혹명나방의 한국 내 분포 변화 분석과 예측)

  • Taechul Park;Hojung Jang;SoEun Eom;Kimoon Son;Jung-Joon Park
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.2
    • /
    • pp.214-223
    • /
    • 2022
  • Among migratory insect pests, Mythimna seperata and Cnaphalocrocis medinalis are invasive pests introduced into South Korea through westerlies from southern China. M. seperata and C. medinalis are insect pests that use rice as a host. They injure rice leaves and inhibit rice growth. To understand the distribution of M. seperata and C. medinalis, it is important to understand environmental factors such as temperature and humidity of their habitat. This study predicted current and future habitat suitability models for understanding the distribution of M. seperata and C. medinalis. Occurrence data, SSPs (Shared Socio-economic Pathways) scenario, and RCP (Representative Concentration Pathway) were applied to MaxEnt (Maximum Entropy), a machine learning model among SDM (Species Distribution Model). As a result, M. seperata and C. medinalis are aggregated on the west and south coasts where they have a host after migration from China. As a result of MaxEnt analysis, the contribution was high in the order of Land-cover data and DEM (Digital Elevation Model). In bioclimatic variables, BIO_4 (Temperature seasonality) was high in M. seperata and BIO_2 (Mean Diurnal Range) was found in C. medinalis. The habitat suitability model predicted that M. seperata and C. medinalis could inhabit most rice paddies.

Prediction of Potential Distributions of Two Invasive Alien Plants, Paspalum distichum and Ambrosia artemisiifolia, Using Species Distribution Model in Korean Peninsula (한반도에서 종 분포 모델을 이용한 두 침입외래식물, 돼지풀과 물참새피의 잠재적 분포 예측)

  • Lee, SeungHyun;Cho, Kang-Hyun;Lee, Woojoo
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.3
    • /
    • pp.189-200
    • /
    • 2016
  • The species distribution model would be a useful tool for understanding how invasive alien species spread over the country and what environmental variables contribute to their distributions. This study is focused on the potential distribution of two invasive alien species, the common ragweed (Ambrosia artemisiifolia) and knotgrass (Paspalum distichum) in the Korean Peninsula. The maximum entropy (Maxent) model was used for the prediction of their distribution by inferring their climatic environmental requirements from localities where they are currently known to occur. We obtained their presence data from the Global Biodiversity Information Facility and the Korean plant species databases and bioclimatic data from the WorldClim dataset. As a results of the modelling, the potential distribution predicted by global occurrence data was more accurate than that by native occurrence data. The variables determining the common ragweed distribution were precipitation of the driest month and annual mean temperature. Both annual and the coldest quarter mean temperatures were critical factors in determining the knotgrass distribution. The Maxent model could be a useful tool for the prediction of alien species invasion and the management of their expansion.

Predicting the Potential Distribution of an Invasive Species, Solenopsis invicta Buren (Hymenoptera: Formicidae), under Climate Change using Species Distribution Models

  • SUNG, Sunyong;KWON, Yong-Su;LEE, Dong Kun;CHO, Youngho
    • Entomological Research
    • /
    • v.48 no.6
    • /
    • pp.505-513
    • /
    • 2018
  • The red imported fire ant is considered one of the most notorious invasive species because of its adverse impact on both humans and ecosystems. Public concern regarding red imported fire ants has been increasing, as they have been found seven times in South Korea. Even if red imported fire ants are not yet colonized in South Korea, a proper quarantine plan is necessary to prevent their widespread distribution. As a basis for quarantine planning, we modeled the potential distribution of the red imported fire ant under current climate conditions using six different species distribution models (SDMs) and then selected the random forest (RF) model for modeling the potential distribution under climate change. We acquired occurrence data from the Global Biodiversity Information Facility (GBIF) and bioclimatic data from WorldClim. We modeled at the global scale to project the potential distribution under the current climate and then applied models at the local scale to project the potential distribution of the red imported fire ant under climate change. Modeled results successfully represent the current distribution of red imported fire ants. The potential distribution area for red imported fire ants increased to include major harbors and airports in South Korea under the climate change scenario (RCP 8.5). Thus, we are able to provide a potential distribution of red imported fire ant that is necessary to establish a proper quarantine plan for their management to minimize adverse impacts of climate change.

The Impact of High Apparent Temperature on the Increase of Summertime Disease-related Mortality in Seoul: 1991-2000 (높은 체감온도가 서울의 여름철 질병 사망자 증가에 미치는 영향, 1991-2000)

  • Choi, Gwang-Yong;Choi, Jong-Nam;Kwon, Ho-Jang
    • Journal of Preventive Medicine and Public Health
    • /
    • v.38 no.3
    • /
    • pp.283-290
    • /
    • 2005
  • Objectives : The aim of this paper was to examine the relationship between the summertime (June to August) heat index, which quantifies the bioclimatic apparent temperature in sultry weather, and the daily disease-related mortality in Seoul for the period from 1991 to 2000. Methods : The daily maximum (or minimum) summertime heat indices, which show synergetic apparent temperatures, were calculated from the six hourly temperatures and real time humidity data for Seoul from 1991 to 2000. The disease-related daily mortality was extracted with respect to types of disease, age and sex, etc. and compared with the time series of the daily heat indices. Results : The summertime mortality in 1994 exceeded the normal by 626 persons. Specifically, blood circulation-related and cancer-related mortalities increased in 1994 by 29.7% (224 persons) and 15.4% (107 persons), respectively, compared with those in 1993. Elderly persons, those above 65 years, were shown to be highly susceptible to strong heat waves, whereas the other age and sex-based groups showed no significant difference in mortality. In particular, a heat wave episode on the 22nd of July 2004 ($>45^{\circ}C$ daily heat index) resulted in double the normal number of mortalities after a lag time of 3 days. Specifically, blood circulation-related mortalities, such as cerebral infraction, were predominant causes. Overall, a critical mortality threshold was reached when the heat index exceeded approximately $37^{\circ}C$, which corresponds to human body temperature. A linear regression model based on the heat indices above $37^{\circ}C$, with a 3 day lag time, accounted for 63% of the abnormally increased mortality (${\geq}+2$ standard deviations). Conclusions : This study revealed that elderly persons, those over 65 years old, are more vulnerable to mortality due to abnormal heat waves in Seoul, Korea. When the daily maximum heat index exceeds approximately $37^{\circ}C$, blood circulation-related mortality significantly increases. A linear regression model, with respect to lag-time, showed that the heat index based on a human model is a more dependable indicator for the prediction of hot weather-related mortality than the ambient air temperature.