• Title/Summary/Keyword: BIM 데이터

Search Result 251, Processing Time 0.021 seconds

Next Generation Smart-City Facility Platform and Digital Chain (차세대 스마트도시 시설물의 플랫폼 정의와 디지털 체인)

  • Yang, Seung-Won;Kim, Jin-Wooung;Kim, Sung-Ah
    • Journal of KIBIM
    • /
    • v.10 no.4
    • /
    • pp.11-21
    • /
    • 2020
  • With increasing interest and research on smart cities, there is also an increasing number of studies on urban facilities that can be built within smart cities. According to these studies, smart cities' urban facilities are likely to become high value-added industries. However, the concept of smart city is not clear because it involves various fields. Therefore, in this study, the definition of Next-Generation(N.G) Smart City Facilities with Digital Twin and Digital Chain is carried out through a multidisciplinary approach. Based on this, Next-Generation Smart City Facilities will be divided into High Value-Added Products and Big Data Platforms. Subsequently, the definition of the Digital Chain containing the data flow of the entire process built through the construction of the Digital Twin proceeds. The definitions derived are applied to the Next-Generation Noise Barrier Tunnel to ensure that data is exchanged at the Digital Twin stage, and to review the proposed configuration of the Digital Chain and Data Flow in this study. The platform definition and Digital Chain of Next-Generation Smart City Facilities proposed in this study suggest that it can affect not only the aspects of data management that are currently in the spotlight, but also the manufacturing industry as a whole.

Travel Behavior Analysis using Origin-Destination Data for the Subway Line No.7 (수도권 지하철 7호선 주요역 통근통행특성 분석 연구)

  • Han, Sang-Cheon;Lee, Kyung-Chul;Kim, Hwan-Yong;Choi, Young Woo
    • Journal of KIBIM
    • /
    • v.9 no.4
    • /
    • pp.75-83
    • /
    • 2019
  • Recent data development has made it possible to analyze each individual's daily commuting by using transportation card transaction. This research utilizes about 1 million observations from the subway line no.7 of Seoul metropolitan transportation data. By using such a massive dataset, the authors try to identify daily travel behavior of morning commute and its possible relationship between subway usage and socio-economic factors. There are 4 main types of users and their travel behavior, and top 15 stations with the most users for arrival and departure are selected. Accordingly, 15 stations have distinctive characteristics including population density and the number of businesses around stations. To identify this fact, the 4 most populated stations are selected and their socio-economic factors are examined. According to the analysis, the most departure stations are generally surrounded by hihgly populated residential areas, whereas the most arrival stations are stood within the job concentrated districts.

CNN deep learning based estimation of damage locations of a PSC bridge using static strain data (정적 변형률 데이터를 사용한 CNN 딥러닝 기반 PSC 교량 손상위치 추정)

  • Han, Man-Seok;Shin, Soo-Bong;An, Hyo-Joon
    • Journal of KIBIM
    • /
    • v.10 no.2
    • /
    • pp.21-28
    • /
    • 2020
  • As the number of aging bridges increases, more studies are being conducted on developing effective and reliable methods for the assessment and maintenance of bridges. With the advancement in new sensing systems and data learning techniques through AI technology, there is growing interests in how to evaluate bridges using these advanced techniques. This paper presents a CNN(Convolution Neural Network) deep learning based technique for evaluating the damage existence and for estimating the damage location in PSC bridges using static strain data. Simulation studies were conducted to investigate the proposed method with error analysis. Damage was simulated as the reduction in the stiffness of a finite element. A data learning model was constructed by applying the CNN technique as a type of deep learning. The damage status and its location were estimated using data set built through simulation. It was assumed that the strain gauges were installed in a regular interval under the PSC bridge girders. In order to increase the accuracy in evaluating damage, the squared error between the intact and measured strains are computed and applied for training the data model. Considering the damage occurring near the supports, the results of error analysis were compared according to whether strain data near the supports were included.

Analysis of the Gas Price Determination Factors at Gas Stations Using GIS Analysis - Centered on the Location Factors of the Gas Station and Government Offices - (GIS 분석을 통한 주유소 휘발유 가격 결정 요인 분석 - 협약주유소 입지와 관공서 입지 요인을 중심으로 -)

  • Go, Gyu-Hee;Lee, Jae Seung;Lee, Sae-Young
    • Journal of KIBIM
    • /
    • v.11 no.2
    • /
    • pp.43-53
    • /
    • 2021
  • The 'public agency oil joint purchase system' was introduced to lower public sector oil prices and contribute to the stability of the overall consumer oil market. The present study used spatial regression to analyze the factors affecting domestic gasoline price, focusing on the impact of potential implicit collusion among gas stations in determining domestic gasoline prices. Also, this study investigated the effect the location characteristics of the market convention gas stations and government offices on the pressure of price competition in the market and the gasoline price at general gas stations. To summarize the results of the spatial lag model (SLM), the individual characteristics of gas stations such as convenience stores (+), self-fuelling (-), commercial areas (+), subway stations (+), population density (-), and sales (-) are correlated to gasoline prices at gas stations, and the institutional location factors of gas stations (+) affected the average of 9 won per liter, 11 won per liter. In order to solve these problems, the establishment of a monitoring system reflecting the location characteristics of the region and the ongoing review of the system should be carried out. In addition, separate, expanded and promotional measures should be prepared for the convenience of general and public oil buyers.

Machine Learning based Optimal Location Modeling for Children's Smart Pedestrian Crosswalk: A Case Study of Changwon-si (머신러닝을 활용한 어린이 스마트 횡단보도 최적입지 선정 - 창원시 사례를 중심으로 -)

  • Lee, Suhyeon;Suh, Youngwon;Kim, Sein;Lee, Jaekyung;Yun, Wonjoo
    • Journal of KIBIM
    • /
    • v.12 no.2
    • /
    • pp.1-11
    • /
    • 2022
  • Road traffic accidents (RTAs) are the leading cause of accidental death among children. RTA reduction is becoming an increasingly important social issue among children. Municipalities aim to resolve this issue by introducing "Smart Pedestrian Crosswalks" that help prevent traffic accidents near children's facilities. Nonetheless such facilities tend to be installed in relatively limited number of areas, such as the school zone. In order for budget allocation to be efficient and policy effects maximized, optimal location selection based on machine learning is needed. In this paper, we employ machine learning models to select the optimal locations for smart pedestrian crosswalks to reduce the RTAs of children. This study develops an optimal location index using variable importance measures. By using k-means clustering method, the authors classified the crosswalks into three types after the optimal location selection. This study has broadened the scope of research in relation to smart crosswalks and traffic safety. Also, the study serves as a unique contribution by integrating policy design decisions based on public and open data.

Smart City Governance Logic Model Converging Hub-and-spoke Data Management and Blockchain Technology (허브 앤 스포크형 데이터 관리 및 블록체인 기술 융합 스마트도시 거버넌스 로직모델)

  • Choi, Sung-Jin
    • Journal of KIBIM
    • /
    • v.14 no.1
    • /
    • pp.30-38
    • /
    • 2024
  • This study aims to propose a smart city governance logic model that can accommodate more diverse information service systems by mixing hub-and-spoke and blockchain technologies as a data management model. Specifically, the research focuses on deriving the logic of an operating system that can work across smart city planning based on the two data governance technologies. The first step of the logic is the generation and collection of information, which is first divided into information that requires information protection and information that can be shared with the public, and the information that requires privacy is blockchainized, and the shared information is integrated and aggregated in a data hub. The next step is the processing and use of the information, which can actively use the blockchain technology, but for the information that can be shared other than the protected information, the governance logic is built in parallel with the hub-and-spoke type. Next is the logic of the distribution stage, where the key is to establish a service contact point between service providers and beneficiaries. Also, This study proposes the establishment of a one-to-one data exchange relationship between information providers, information consumers, and information processors. Finally, in order to expand and promote citizen participation opportunities through a reasonable compensation system in the operation of smart cities, we developed virtual currency as a local currency and designed an open operation logic of local virtual currency that can operate in the compensation dimension of information.

UAV and LiDAR SLAM Combination Effectiveness Review for Indoor and Outdoor Reverse Engineering of Multi-Story Building (복층 건물 실내외 역설계를 위한 UAV 및 LiDAR SLAM 조합 효용성 검토)

  • Kang, Joon-Oh;Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.2
    • /
    • pp.69-79
    • /
    • 2020
  • TRecently, smart cities that solve various problems in cities based on IoT technology are in the spotlight. In particular, cases of BIM application for smooth management of construction and maintenance are increasing, and spatial information is converted into 3D data through convergence technology and used for safety diagnosis. The purpose of this study is to create and combine point clouds of a multi-story building by using a ground laser scanner and a handheld LiDAR SLAM among UAV and LiDAR equipment, supplementing the Occluded area and disadvantages of each technology, examine the effectiveness of indoor and outdoor reverse design by observing shape reproduction and accuracy. As a result of the review, it was confirmed that the coordinate accuracy of the data was improved by creating and combining the indoor and outdoor point clouds of the multi-story building using three technologies. In particular, by supplementing the shortcomings of each technology, the completeness of the shape reproduction of the building was improved, the Occluded area and boundary were clearly distinguished, and the effectiveness of reverse engineering was verified.

Study on the White Noise effect Against Adversarial Attack for Deep Learning Model for Image Recognition (영상 인식을 위한 딥러닝 모델의 적대적 공격에 대한 백색 잡음 효과에 관한 연구)

  • Lee, Youngseok;Kim, Jongweon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.1
    • /
    • pp.27-35
    • /
    • 2022
  • In this paper we propose white noise adding method to prevent missclassification of deep learning system by adversarial attacks. The proposed method is that adding white noise to input image that is benign or adversarial example. The experimental results are showing that the proposed method is robustness to 3 adversarial attacks such as FGSM attack, BIN attack and CW attack. The recognition accuracies of Resnet model with 18, 34, 50 and 101 layers are enhanced when white noise is added to test data set while it does not affect to classification of benign test dataset. The proposed model is applicable to defense to adversarial attacks and replace to time- consuming and high expensive defense method against adversarial attacks such as adversarial training method and deep learning replacing method.

Exploring the Combined Use of LiDAR and Augmented Reality for Enhanced Vertical and Horizontal Measurements of Structural Frames (골조 수직, 수평 측정작업 시 LiDAR 및 AR 기술 적용방안 제시)

  • Park, Inae;Kim, Sangyong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.273-284
    • /
    • 2023
  • This study is centered on the combined use of LiDAR(Light Detection and Ranging) and AR(Augmented Reality) technologies during vertical and horizontal frame measurements in construction projects. The intention is to enhance the quality control procedure, elevate accuracy, and curtail manual labor along with time expenditure. Present methods for accuracy inspection in frame construction often grapple with reliability concerns due to subjective interpretation and the scope for human error. This research recommends the application of LiDAR and AR technologies to counter these issues and augment the efficiency of the inspection process, along with facilitating the dissemination of results. The suggested technique involves the collection of 3D point cloud data of the frame utilizing LiDAR and leveraging this data for checks on construction accuracy. Furthermore, the inspection outcomes are fed into a BIM (Building Information Modeling) model, and the results are visualized via AR. Upon juxtaposing this methodology with the current approach, it is evident that it offers benefits in terms of objective inspection, speed, precise result sharing, and potential enhancements to the overall quality and productivity of construction projects.

Development of Design Support Tool for Building 3D printing (건축물 3D 프린팅 설계지원도구 개발)

  • Lee, Dongyoun;Seo, Myoung-Bae;Ju, Ki-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.94-105
    • /
    • 2020
  • Recently, most studies of 3D printing in construction have focused on the development of 3D printers and materials suitable for construction 3D printers. In comparison, there has been little research on design support tools that enable representative BIM data of building modeling tools to be applied to 3D printing. In addition, existing 3D printing slicing programs are commercialized around manufacturing, showing that they are unsuitable for construction 3D printing. Therefore, this research aims to develop a design support tool for 3D printing for buildings. The developed design support tool was validated based on arbitrary BIM data. Verification showed that wall pattern generation was modeled accurately without errors, and a calculation of the construction period showed that the formula presented in this study was valid. Furthermore, the maximum length of the mesh split was set to 100mm to minimize errors when converting to STL files.