• Title/Summary/Keyword: BERT

Search Result 395, Processing Time 0.027 seconds

A Recommendation System by Extracting Scholarship Information with a BERT's Q&A Model (BERT Q&A 모델을 활용한 장학금 정보 추출 및 추천 시스템)

  • Byeongjun Kang;Kyujin Kim;Jinah Park;Ijun Jang;Jaehyun Joo;Hyungjoon Koo
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.288-289
    • /
    • 2023
  • 본 논문은 글로벌 이슈로 인한 인플레이션과 대학 등록금 인상 우려 등으로 인해 장학금의 중요성이 부각되고 있는 상황을 고려하여 기존의 장학금 공고 게시물을 수집한 후 BERT Q&A (Bidirectional Encoder Representations from Transformers Question & Answering) 모델을 이용해 개별 맞춤형 장학 공고를 추천하는 시스템을 제안한다. 우선 웹 크롤링을 통해 장학금 정보를 수집하고, BERT Q&A 모델과 사전에 정의한 규칙 기반으로 핵심 정보를 추출한다. 이후 분류 과정을 거쳐 사용자가 입력한 정보와 매칭하여 조건에 맞는 장학금 게시물을 추천할 수 있는 어플리케이션을 구현하였다.

A Study On YouTube Fake News Detection System Using Sentence-BERT (Sentence-BERT를 활용한 YouTube 가짜뉴스 탐지 시스템 연구)

  • Beom Jung Kim;Ji Hye Huh;Hyeopgeon Lee;Young Woon Kim
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.667-668
    • /
    • 2023
  • IT 기술의 발달로 인해 뉴스를 제공하는 플랫폼들이 다양해 졌고 최근 해외 인터뷰 영상, 해외 뉴스를 Youtube Shorts형태로 제작하여 화자의 의도와는 다른 자막을 달며 가짜 뉴스가 생성되는 문제가 대두되고 있다. 이에 본 논문에서는 Sentence-BERT를 활용한 YouTube 가짜 뉴스 탐지 시스템을 제안한다. 제안하는 시스템은 Python 라이브러리를 사용해 유튜브 영상에서 음성과 영상 데이터를 분류하고 분류된 영상 데이터는 EasyOCR을 사용해 자막 데이터를 텍스트로 추출 후 Sentence-BERT를 활용해 문자 유사도를 분석한다. 분석결과 음성 데이터와 영상 자막 데이터가 일치한 경우 일치하지 않은 경우보다 약 62% 더 높은 문장 유사도를 보였다.

BERT-Based Logits Ensemble Model for Gender Bias and Hate Speech Detection

  • Sanggeon Yun;Seungshik Kang;Hyeokman Kim
    • Journal of Information Processing Systems
    • /
    • v.19 no.5
    • /
    • pp.641-651
    • /
    • 2023
  • Malicious hate speech and gender bias comments are common in online communities, causing social problems in our society. Gender bias and hate speech detection has been investigated. However, it is difficult because there are diverse ways to express them in words. To solve this problem, we attempted to detect malicious comments in a Korean hate speech dataset constructed in 2020. We explored bidirectional encoder representations from transformers (BERT)-based deep learning models utilizing hyperparameter tuning, data sampling, and logits ensembles with a label distribution. We evaluated our model in Kaggle competitions for gender bias, general bias, and hate speech detection. For gender bias detection, an F1-score of 0.7711 was achieved using an ensemble of the Soongsil-BERT and KcELECTRA models. The general bias task included the gender bias task, and the ensemble model achieved the best F1-score of 0.7166.

Design of Real-Time Voice Phishing Detection Techniques using KoBERT (KoBERT를 활용한 실시간 보이스피싱 탐지기법 개념설계)

  • Yeong Jin Kim;Byoung-Yup Lee;Ah Reum Kang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.95-96
    • /
    • 2024
  • 본 논문은 금융 범죄 중 하나인 보이스피싱을 실시간으로 예방하기 위한 탐지 기법을 제안한다. 제안된 모델은 수화기에 출력되는 음성을 녹음하고 네이버 CSR(Cloud Speech Recognition)을 통해 텍스트 파일로 변환한 후 딥러닝 기반의 KoBERT를 바탕으로 다양한 보이스피싱 패턴을 학습하여 실시간 환경에서의 신속하고 정확한 탐지를 위해 실제 통화 데이터를 적절하게 처리하여, 이를 통해 효과적인 보이스피싱 예방에 도움을 줄 것으로 예상된다.

  • PDF

BERT-based Classification Model for Korean Documents (한국어 기술문서 분석을 위한 BERT 기반의 분류모델)

  • Hwang, Sangheum;Kim, Dohyun
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.1
    • /
    • pp.203-214
    • /
    • 2020
  • It is necessary to classify technical documents such as patents, R&D project reports in order to understand the trends of technology convergence and interdisciplinary joint research, technology development and so on. Text mining techniques have been mainly used to classify these technical documents. However, in the case of classifying technical documents by text mining algorithms, there is a disadvantage that the features representing technical documents must be directly extracted. In this study, we propose a BERT-based document classification model to automatically extract document features from text information of national R&D projects and to classify them. Then, we verify the applicability and performance of the proposed model for classifying documents.

A BERT-Based Deep Learning Approach for Vulnerability Detection (BERT를 이용한 딥러닝 기반 소스코드 취약점 탐지 방법 연구)

  • Jin, Wenhui;Oh, Heekuck
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.6
    • /
    • pp.1139-1150
    • /
    • 2022
  • With the rapid development of SW Industry, softwares are everywhere in our daily life. The number of vulnerabilities are also increasing with a large amount of newly developed code. Vulnerabilities can be exploited by hackers, resulting the disclosure of privacy and threats to the safety of property and life. In particular, since the large numbers of increasing code, manually analyzed by expert is not enough anymore. Machine learning has shown high performance in object identification or classification task. Vulnerability detection is also suitable for machine learning, as a reuslt, many studies tried to use RNN-based model to detect vulnerability. However, the RNN model is also has limitation that as the code is longer, the earlier can not be learned well. In this paper, we proposed a novel method which applied BERT to detect vulnerability. The accuracy was 97.5%, which increased by 1.5%, and the efficiency also increased by 69% than Vuldeepecker.

Comparison and Analysis of Unsupervised Contrastive Learning Approaches for Korean Sentence Representations (한국어 문장 표현을 위한 비지도 대조 학습 방법론의 비교 및 분석)

  • Young Hyun Yoo;Kyumin Lee;Minjin Jeon;Jii Cha;Kangsan Kim;Taeuk Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.360-365
    • /
    • 2022
  • 문장 표현(sentence representation)은 자연어처리 분야 내의 다양한 문제 해결 및 응용 개발에 있어 유용하게 활용될 수 있는 주요한 도구 중 하나이다. 하지만 최근 널리 도입되고 있는 사전 학습 언어 모델(pre-trained language model)로부터 도출한 문장 표현은 이방성(anisotropy)이 뚜렷한 등 그 고유의 특성으로 인해 문장 유사도(Semantic Textual Similarity; STS) 측정과 같은 태스크에서 기대 이하의 성능을 보이는 것으로 알려져 있다. 이러한 문제를 해결하기 위해 대조 학습(contrastive learning)을 사전 학습 언어 모델에 적용하는 연구가 문헌에서 활발히 진행되어 왔으며, 그중에서도 레이블이 없는 데이터를 활용하는 비지도 대조 학습 방법이 주목을 받고 있다. 하지만 대다수의 기존 연구들은 주로 영어 문장 표현 개선에 집중하였으며, 이에 대응되는 한국어 문장 표현에 관한 연구는 상대적으로 부족한 실정이다. 이에 본 논문에서는 대표적인 비지도 대조 학습 방법(ConSERT, SimCSE)을 다양한 한국어 사전 학습 언어 모델(KoBERT, KR-BERT, KLUE-BERT)에 적용하여 문장 유사도 태스크(KorSTS, KLUE-STS)에 대해 평가하였다. 그 결과, 한국어의 경우에도 일반적으로 영어의 경우와 유사한 경향성을 보이는 것을 확인하였으며, 이에 더하여 다음과 같은 새로운 사실을 관측하였다. 첫째, 사용한 비지도 대조 학습 방법 모두에서 KLUE-BERT가 KoBERT, KR-BERT보다 더 안정적이고 나은 성능을 보였다. 둘째, ConSERT에서 소개하는 여러 데이터 증강 방법 중 token shuffling 방법이 전반적으로 높은 성능을 보였다. 셋째, 두 가지 비지도 대조 학습 방법 모두 검증 데이터로 활용한 KLUE-STS 학습 데이터에 대해 성능이 과적합되는 현상을 발견하였다. 결론적으로, 본 연구에서는 한국어 문장 표현 또한 영어의 경우와 마찬가지로 비지도 대조 학습의 적용을 통해 그 성능을 개선할 수 있음을 검증하였으며, 이와 같은 결과가 향후 한국어 문장 표현 연구 발전에 초석이 되기를 기대한다.

  • PDF

Analysis of trends in deep learning and reinforcement learning

  • Dong-In Choi;Chungsoo Lim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.55-65
    • /
    • 2023
  • In this paper, we apply KeyBERT(Keyword extraction with Bidirectional Encoder Representations of Transformers) algorithm-driven topic extraction and topic frequency analysis to deep learning and reinforcement learning research to discover the rapidly changing trends in them. First, we crawled abstracts of research papers on deep learning and reinforcement learning, and temporally divided them into two groups. After pre-processing the crawled data, we extracted topics using KeyBERT algorithm, and then analyzed the extracted topics in terms of topic occurrence frequency. This analysis reveals that there are distinct trends in research work of all analyzed algorithms and applications, and we can clearly tell which topics are gaining more interest. The analysis also proves the effectiveness of the utilized topic extraction and topic frequency analysis in research trend analysis, and this trend analysis scheme is expected to be used for research trend analysis in other research fields. In addition, the analysis can provide insight into how deep learning will evolve in the near future, and provide guidance for select research topics and methodologies by informing researchers of research topics and methodologies which are recently attracting attention.

Fine-tuning BERT-based NLP Models for Sentiment Analysis of Korean Reviews: Optimizing the sequence length (BERT 기반 자연어처리 모델의 미세 조정을 통한 한국어 리뷰 감성 분석: 입력 시퀀스 길이 최적화)

  • Sunga Hwang;Seyeon Park;Beakcheol Jang
    • Journal of Internet Computing and Services
    • /
    • v.25 no.4
    • /
    • pp.47-56
    • /
    • 2024
  • This paper proposes a method for fine-tuning BERT-based natural language processing models to perform sentiment analysis on Korean review data. By varying the input sequence length during this process and comparing the performance, we aim to explore the optimal performance according to the input sequence length. For this purpose, text review data collected from the clothing shopping platform M was utilized. Through web scraping, review data was collected. During the data preprocessing stage, positive and negative satisfaction scores were recalibrated to improve the accuracy of the analysis. Specifically, the GPT-4 API was used to reset the labels to reflect the actual sentiment of the review texts, and data imbalance issues were addressed by adjusting the data to 6:4 ratio. The reviews on the clothing shopping platform averaged about 12 tokens in length, and to provide the optimal model suitable for this, five BERT-based pre-trained models were used in the modeling stage, focusing on input sequence length and memory usage for performance comparison. The experimental results indicated that an input sequence length of 64 generally exhibited the most appropriate performance and memory usage. In particular, the KcELECTRA model showed optimal performance and memory usage at an input sequence length of 64, achieving higher than 92% accuracy and reliability in sentiment analysis of Korean review data. Furthermore, by utilizing BERTopic, we provide a Korean review sentiment analysis process that classifies new incoming review data by category and extracts sentiment scores for each category using the final constructed model.

Zero-anaphora resolution in Korean based on deep language representation model: BERT

  • Kim, Youngtae;Ra, Dongyul;Lim, Soojong
    • ETRI Journal
    • /
    • v.43 no.2
    • /
    • pp.299-312
    • /
    • 2021
  • It is necessary to achieve high performance in the task of zero anaphora resolution (ZAR) for completely understanding the texts in Korean, Japanese, Chinese, and various other languages. Deep-learning-based models are being employed for building ZAR systems, owing to the success of deep learning in the recent years. However, the objective of building a high-quality ZAR system is far from being achieved even using these models. To enhance the current ZAR techniques, we fine-tuned a pretrained bidirectional encoder representations from transformers (BERT). Notably, BERT is a general language representation model that enables systems to utilize deep bidirectional contextual information in a natural language text. It extensively exploits the attention mechanism based upon the sequence-transduction model Transformer. In our model, classification is simultaneously performed for all the words in the input word sequence to decide whether each word can be an antecedent. We seek end-to-end learning by disallowing any use of hand-crafted or dependency-parsing features. Experimental results show that compared with other models, our approach can significantly improve the performance of ZAR.