• Title/Summary/Keyword: BEMD

Search Result 7, Processing Time 0.022 seconds

Multiscale self-coordination of bidimensional empirical mode decomposition in image fusion

  • An, Feng-Ping;Zhou, Xian-Wei;Lin, Da-Chao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.4
    • /
    • pp.1441-1456
    • /
    • 2015
  • The bidimensional empirical mode decomposition (BEMD) algorithm with high adaptability is more suitable to process multiple image fusion than traditional image fusion. However, the advantages of this algorithm are limited by the end effects problem, multiscale integration problem and number difference of intrinsic mode functions in multiple images decomposition. This study proposes the multiscale self-coordination BEMD algorithm to solve this problem. This algorithm outside extending the feather information with the support vector machine which has a high degree of generalization, then it also overcomes the BEMD end effects problem with conventional mirror extension methods of data processing,. The coordination of the extreme value point of the source image helps solve the problem of multiscale information fusion. Results show that the proposed method is better than the wavelet and NSCT method in retaining the characteristics of the source image information and the details of the mutation information inherited from the source image and in significantly improving the signal-to-noise ratio.

A Study on Blind Watermarking Technique of Digital Image using 2-Dimensional Empirical Mode Decomposition in Wavelet Domain (웨이블릿 평면에서의 2D-EMD를 이용한 디지털 영상의 블라인드 워터마킹 기술에 관한 연구)

  • Lee, Young-Seock;Kim, Jong-Weon
    • Journal of Internet Computing and Services
    • /
    • v.11 no.2
    • /
    • pp.99-107
    • /
    • 2010
  • In this paper a blind watermarking algorithm for digital image is presented. The proposed method operates in wavelet domain. The watermark is decomposed into 2D-IMFs using BEMD which is the 2-dimensional extension of 1 dimensional empirical mode decomposition. The CDMA based on SS technique is applied to watermark embedding and detection process. In the watermark embedding process, each IMF of watermark is embedded into middle frequency subimages in wavelet domain, so subimages just include partial information about embedded watermark. By characteristics of BEMD, when the partial information of watermark is synthesized, the original watermark is reconstructed. The experimental results show that the proposed watermarking algorithm is imperceptible and moreover is robust against JPEG compression, common image processing distortions.

A method for underwater image analysis using bi-dimensional empirical mode decomposition technique

  • Liu, Bo;Lin, Yan
    • Ocean Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.137-145
    • /
    • 2012
  • Recent developments in underwater image recognition methods have received large attention by the ocean engineering researchers. In this paper, an improved bi-dimensional empirical mode decomposition (BEMD) approach is employed to decompose the given underwater image into intrinsic mode functions (IMFs) and residual. We developed a joint algorithm based on BEMD and Canny operator to extract multi-pixel edge features at multiple scales in IMFs sub-images. So the multiple pixel edge extraction is an advantage of our approach; the other contribution of this method is the realization of the bi-dimensional sifting process, which is realized utilizing regional-based operators to detect local extreme points and constructing radial basis function for curve surface interpolation. The performance of the multi-pixel edge extraction algorithm for processing underwater image is demonstrated in the contrast experiment with both the proposed method and the phase congruency edge detection.

ILLUMINATION ADUSTMENT FOR BRIDGE COATING IMAGES USING BEMD-MORPHOLOGY APPROACH

  • Po-Han Chen;Ya-Ching Yang;Luh-Maan Chang
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.224-229
    • /
    • 2009
  • Digital image recognition has been used for steel bridge surface assessment since late 1990s. However, the non-uniform illumination problems such as shades, shadows, and highlights are still challenges in image processing to date. Therefore, this paper develops a new approach to tackle the non-uniform illumination problem for rust image adjustment. The inhomogeneous illumination problem is divided into shades/shadows and highlights in this paper. The proposed BEMD-morphology approach (BMA) utilizes the bidimensional empirical mode decomposition to mitigate the shade/shadow effect, and the morphological processing to detect and replace the highlight area. Finally, the rust image processed with the BMA will be segmented by the K-Means algorithm, one of the most popular and effective methods, to show the effectiveness of illumination adjustment.

  • PDF

An adaptive method of multi-scale edge detection for underwater image

  • Bo, Liu
    • Ocean Systems Engineering
    • /
    • v.6 no.3
    • /
    • pp.217-231
    • /
    • 2016
  • This paper presents a new approach for underwater image analysis using the bi-dimensional empirical mode decomposition (BEMD) technique and the phase congruency information. The BEMD algorithm, fully unsupervised, it is mainly applied to texture extraction and image filtering, which are widely recognized as a difficult and challenging machine vision problem. The phase information is the very stability feature of image. Recent developments in analysis methods on the phase congruency information have received large attention by the image researchers. In this paper, the proposed method is called the EP model that inherits the advantages of the first two algorithms, so this model is suitable for processing underwater image. Moreover, the receiver operating characteristic (ROC) curve is presented in this paper to solve the problem that the threshold is greatly affected by personal experience when underwater image edge detection is performed using the EP model. The EP images are computed using combinations of the Canny detector parameters, and the binaryzation image results are generated accordingly. The ideal EP edge feature extractive maps are estimated using correspondence threshold which is optimized by ROC analysis. The experimental results show that the proposed algorithm is able to avoid the operation error caused by manual setting of the detection threshold, and to adaptively set the image feature detection threshold. The proposed method has been proved to be accuracy and effectiveness by the underwater image processing examples.

Probing α/β Balances in Modified Amber Force Fields from a Molecular Dynamics Study on a ββα Model Protein (1FSD)

  • Yang, Changwon;Kim, Eunae;Pak, Youngshang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1713-1719
    • /
    • 2014
  • 1FSD is a 28-residue designed protein with a ${\beta}{\beta}{\alpha}$ motif. Since this protein displays most essential features of protein structures in such a small size, this model protein can be an outstanding system for evaluating the balance in the propensity of the secondary structures and the quality of all-atom protein force fields. Particularly, this protein would be difficult to fold to its correct native structure without establishing proper balances between the secondary structure elements in all-atom energy functions. In this work, a series of the recently optimized five amber protein force fields [$ff03^*$, $f99sb^*$-ildn, ff99sb-${\phi}^{\prime}$-ildn, ff99sb-nmr1-ildn, ff99sb-${\Phi}{\Psi}$(G24, CS)-ildn] were investigated for the simulations of 1FSD using a conventional molecular dynamics (MD) and a biased-exchange meta-dynamics (BEMD) methods. Among those tested force fields, we found that ff99sb-nmr1-ildn and ff99sb-${\Phi}{\Psi}$(G24, CS)-ildn are promising in that both force fields can locate the native state of 1FSD with a high accuracy (backbone rmsd ${\leq}1.7{\AA}$) in the global free energy minimum basin with a reasonable energetics conforming to a previous circular dichroism (CD) experiment. Furthermore, both force fields led to a common set of two distinct folding pathways with a heterogeneous nature of the transition state to the folding. We anticipate that these force fields are reasonably well balanced, thereby transferable to many other protein folds.

Bi-dimensional Empirical Mode Decomposition Algorithm Based on Particle Swarm-Fractal Interpolation

  • An, Feng-Ping;He, Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5955-5977
    • /
    • 2018
  • Performance of the interpolation algorithm used in the technique of bi-dimensional empirical mode decomposition directly affects its popularization and application, so that the researchers pay more attention to the algorithm reasonable, accurate and fast. However, it has been a lack of an adaptive interpolation algorithm that is relatively satisfactory for the bi-dimensional empirical mode decomposition (BEMD) and is derived from the image characteristics. In view of this, this paper proposes an image interpolation algorithm based on the particle swarm and fractal. Its procedure includes: to analyze the given image by using the fractal brown function, to pick up the feature quantity from the image, and then to operate the adaptive image interpolation in terms of the obtained feature quantity. All parameters involved in the interpolation process are determined by using the particle swarm optimization algorithm. The presented interpolation algorithm can solve those problems of low efficiency and poor precision in the interpolation operation of bi-dimensional empirical mode decomposition and can also result in accurate and reliable bi-dimensional intrinsic modal functions with higher speed in the decomposition of the image. It lays the foundation for the further popularization and application of the bi-dimensional empirical mode decomposition algorithm.