• Title/Summary/Keyword: BED MATERIAL

Search Result 580, Processing Time 0.026 seconds

Effect of Solid Mass Inventory on Hydrodynamics Characteristics in a Circulating Fluidized Bed (순환유동층에서 유동매체량에 따른 수력학적 특성 연구)

  • Kim, E.K.;Shin, D.;Lee, J.;Kim, J.;Hwang, J.
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.4
    • /
    • pp.10-20
    • /
    • 2002
  • This paper discusses effect of solid mass inventory on the hydrodynamic characteristics of circulating fluidized bed(CFB). Operating parameters of solid mass inventory and air flow rates were varied to understand their effects on fludization pattern. Experimental measurements were made in a CFB of which height and diameter are 3m and 0.05m respectively. Black SiC particles ranging from $100{\mu}m\;to\;500{\mu}m$ were employed as the bed material. Superficial gas velocity of riser and J-valve fluidizing velocity were in the ranges of $1.39{\sim}3.24m/s\;and\;0.139{\sim}0.232m/s$, respectively. The axial solid fraction and solid circulation rate of CFB were calculated based on the experimental data and compared with modellings through IEA-CFBC Model and commercial CFD code.

  • PDF

Air Flow and Heat Storage Performance of Solar-Heated Greenhouse with Rock Bed Storage (자갈축열 태양열 온실의 공기유동 및 축열 성능)

  • Lee, Suk-Gun;Lee, Jong-Won;Lee, Hyun-Woo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.275-280
    • /
    • 2001
  • The purpose of this study was to investigate the air flow characteristics of the rock bed storage for solar-heated greenhouse design. Heat storage material was gravels and experiments were performed under constant inside temperature condition. The experimental parameters were operation method and air flow rate of fan. It was resulted that the temperature and amount of heat stored in rock-bed increased as the increase of air flow velocity and were more influenced by operation of inlet fan than outlet fan.

  • PDF

Mathematical Model and Numerical Analysis for Packed Bed Methanation Reactors (충전층 메탄화 반응기의 수학적 모델 및 전산 수치해석)

  • CHI, JUNHWA
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.3
    • /
    • pp.260-270
    • /
    • 2015
  • One-dimensional packed bed reactor model accounting for interfacial and intra-particle gradients was developed and based on it numerical analyses were performed to investigate the dynamic behavior of a commercial scale methanation reactor. Methanation reaction was almost complete near the reactor inlet and gases with equilibrated composition were discharged from the reactor. Both the intra-particle temperature gradient and differential surface temperature rise were found to be severe near the reactor inlet. To reduce the possible degradation or fracture of catalyst particles and prevent local overheating on the catalyst, addition of inert material can be an effective way.

Hydrodynamic Characteristics of Circulating Fluidized Bed in Different Mass Inventories (순환유동층에서 Solid Mass Inventory에 따른 수력학적 특성 연구)

  • Kim, E.G.;Shin, D.H.;Hwang, J.;Lee, J.;Kim, J.
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.165-172
    • /
    • 2002
  • This paper discusses hydrodynamic characteristics of cold circulating fluidized bed(CFB) in different solid mass inventories. Operating parameters of solid mass inventory, primary air and J-valve fluidizing air were varied to find out the effect on the flow fludization pattern. Experimental measurements were made in a 3m tall CFB that has 0.05m riser diameter and black silica-carbonate of particle sizes from $100{\mu}m$ to $500{\mu}m$ were employed as the bed material. The operating conditions of superficial gas velocity and J-valve fluidizing velocity were in the ranges of 1.39~3.24 m/s and 0.139~0.232 m/s respectively. The axial solid fraction and solid circulation rate of CFB were observed and compared with modelling through IEA-CFBC Model and commercial CFD code.

  • PDF

VORTEX SHEAR VELOCITY AND ITS EROSION IN THE SCOUR HOLE

  • Lee, Hong-Sik;Kim, Jin-Hong;Lee, Sam-Hee
    • Water Engineering Research
    • /
    • v.1 no.4
    • /
    • pp.259-266
    • /
    • 2000
  • Scour hole is formed due to the high shear stress of the jet flow at the outlet of a hydraulic structure and vortex erosion occurs in the scour hole. It is important to determine the amount of vortex erosion occurs in the scour hole. It is important to determine the amount of vortex erosion for the design of bed protection. If the vortex erosion continues and reaches to the hydraulic structure, it causes the deformation of the structure itself. To obtain the amount of the vortex erosion, it is necessary to determine the shear velocity of the line vortex in the scour hole was derived by the theory of energy conservation and found to be related to the upstream overflow velocity. The amount of vortex erosion from the scour hole was obtained using entrainment equation for given value of shear velocity. For a design purpose, if the flow velocity at the end of an apron and the properties of bed material are given, the amount of vortex erosion was obtained.

  • PDF

RESEARCH PAPERS : REMOVAL EFFICIENCY OF THE POLLUTANTS BY MULTILAYERED METAL TREATED CARBON FILTER

  • Oh, Won-Chun;Lee, Ho-Jin;Bae, Jang-Soon
    • Environmental Engineering Research
    • /
    • v.9 no.5
    • /
    • pp.193-200
    • /
    • 2004
  • A study of the treatment of piggery wastes using a multilayered metal-activated carbon system followed by carbon bed filtration was carried out at bench scale. From the physicochemical properties obtained from samples treated with aqueous solutions containing metallic ions such as Ag$^+$, Cu$^{2+}$, Na$^{-}$, K$^+$ and Mn$^{2+}$, main inspections are subjected to isothem shape, pore distribution with micropore, SEM and EDX. Multilayered metal-activated carbons were contacted to waste water to inwestigate the simultaneous catalytic effect for the COD, BOD, T-N and T-P removal. From these removal performance was achieved. The high efficiency of the multilayered metal-activated carbon bed, satisfactory removal performance was achieved. The high efficiency of the multilayered metal-activated carbon bed was derermined by the properties of this material for trapping, catalytic effect and adsorption of organic solid particles.

Effect of Inlet Air Temperature and Atomizing Pressure on Fluidized Bed Coating Efficiency of Broken Peanut (흡입공기온도와 분무압력이 분쇄땅콩의 유동층 코팅효율에 미치는 영향)

  • Kang, Hyun-Ah;Shin, Myung-Gon
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.924-926
    • /
    • 2002
  • The effects of inlet air temperature and atomizing pressure on the coating efficiency were evaluated using peanuts. Broken peanut pieces were coated with dextrin and sodium caseinate solution by a fluidized bed coater. The coating efficiency was significantly influenced by inlet air temperature and atomizing pressure, with the optimal efficiency achieved at $70^{\circ}C$ and 3 bar, respectively. The coating material consisting of dextrin and sodium caseinate could be used for preventing rancidity of broken peanut.

Photocatalytic Decolorization of Dye Using Packed-bed Reactor and Immobilized TiO2/UV System (충전층 반응기와 고정화 TiO2/UV를 이용한 Rhodamine B의 광촉매 탈색)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.16 no.3
    • /
    • pp.255-260
    • /
    • 2007
  • The photocatalytic decolorization of Rhodamine B (RhB) was studied using packed-bed reactor and immobilized $TiO_2/UV$ System. The 20 W UV-A, UV-B and UV-C lamps were employed as the light source. The effect of shape and surface polishing extent of reflector, distance between the reactor and reflector, reactor material were investigated. The results showed that the order of the initial reaction constant with reflector shape was round > polygon > W > rhombus. The optimum distance between the reactor and reflector was 2 cm. The initial reaction constant of quartz reactor was 1.46 times higher than that of tile PVDF reactor.

A Study on Tensile Strength According to Various Output Conditions of PLA+ Materials Using 3D Printing (3D 프린팅을 이용한 PLA+ 소재의 다양한 출력 조건에 따른 인장강도에 대한 연구)

  • Na, D.H.;Kim, S.G.
    • Transactions of Materials Processing
    • /
    • v.31 no.2
    • /
    • pp.89-95
    • /
    • 2022
  • 3D printing products manufactured by material extrusion are used in many industrial fields recently. However, these products are difficult to use in the field due to their low tensile strengths. In order to solve this problem, research on improving the tensile strength of the output using a 3D printer has been continuously conducted. In this study, we performed a tensile test using Universal Testing Machine according to infill pattern, nozzle temperature, bed temperature, and printing speed conditions. Results revealed that tensile specimen of concentric shape had the highest tensile strength in infill pattern condition and that the tensile strength increased linearly with increasing nozzle and bed temperatures. However, the tensile strength decreased with increasing printing speed. Consequently, we confirmed that tensile strength could be increased and decreased depending on output conditions of 3D printing.

Determination of the Optimal Sediment Discharge Formula for Hyeongsan River Using GSTARS (GSTARS모형을 이용한 형산강의 최적 유사량공식 결정)

  • Ahn, Jung Min;Lyu, Siwan;Lee, Nam Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1B
    • /
    • pp.1-7
    • /
    • 2012
  • Quasi-two dimensional numerical model (GSTARS) was applied to determine the optimal sediment discharge formula for simulating the sedimentologic characteristics of Hyeongsan river. The field measurements have been conducted to obtain the data, such as sediment discharge, bed material, and channel geometry, for model calibration and verification. The sediment discharge formulas, which have been generally used, have been assessed according to the average error, relative error, RMSE, RRMSE, discrepancy ratio and Nash-Sutcliffe efficiency coefficient for bed changes along the thalweg. From the results, Laursen formula(1958) shows the best performance to simulate the long-term bed change of Hyeongsan river.