• Title/Summary/Keyword: BCS theory

Search Result 13, Processing Time 0.018 seconds

Convergence Complexity Reduction for Block-based Compressive Sensing Reconstruction (블록기반 압축센싱 복원을 위한 수렴 복잡도 저감)

  • Park, Younggyun;Shim, Hiuk Jae;Jeon, Byeungwoo
    • Journal of Broadcast Engineering
    • /
    • v.19 no.2
    • /
    • pp.240-249
    • /
    • 2014
  • According to the compressive sensing theory, it is possible to perfectly reconstruct a signal only with a fewer number of measurements than the Nyquist sampling rate if the signal is a sparse signal which satisfies a few related conditions. From practical viewpoint for image applications, it is important to reduce its computational complexity and memory burden required in reconstruction. In this regard, a Block-based Compressive Sensing (BCS) scheme with Smooth Projected Landweber (BCS-SPL) has been already introduced. However, it still has the computational complexity problem in reconstruction. In this paper, we propose a method which modifies its stopping criterion, tolerance, and convergence control to make it converge faster. Experimental results show that the proposed method requires less iterations but achieves better quality of reconstructed image than the conventional BCS-SPL.

The influence of non-linear carbon nanotube reinforcement on the natural frequencies of composite beams

  • Mehmet Avcar;Lazreg Hadji;Omer Civalek
    • Advances in nano research
    • /
    • v.14 no.5
    • /
    • pp.421-433
    • /
    • 2023
  • In the present paper, the influences of the variation of exponent of volume fraction of carbon nanotubes (CNTs) on the natural frequencies (NFs) of the carbon nanotube-reinforced composite (CNTRC) beams under four different boundary conditions (BCs) are investigated. The single-walled carbon nanotubes (SWCNTs) are assumed to be aligned and dispersed in a polymeric matrix with various reinforcing patterns, according to the variation of exponent of volume fraction of CNTs for functionally graded (FG) reinforcements. Besides, uniform distribution (UD) of reinforcement is also considered to analyze the influence of the non-linear (NL) variation of the reinforcement of CNTs. Using Hamilton's principle and third-order shear deformation theory (TSDT), the equations of motion of the CNTRC beam are derived. Under four different BCs, the resulting equations are solved analytically. To verify the present formulation, comparison investigations are conducted. To examine the impacts of several factors on the NFs of the CNTRC beams, numerical examples and some benchmark results are presented.

Superconducting property in the Zn substituted MgC$Ni_3$ (Zn로 치환된 MgCN $i_3$의 초전도 특성)

  • 이용우;김진수;박민석;이성익;심지훈;민병일;최은집
    • Progress in Superconductivity
    • /
    • v.4 no.2
    • /
    • pp.144-147
    • /
    • 2003
  • We investigated superconducting property of ($Mg_{1-x}$$Zn_{x}$)$CNi_3$ (x=0,0.03, 0.06, 0.09, 0.12, 0.15, and 0.18) sample where Mg is substituted with Zn. The samples were synthesized us ins the solid state reaction method under As atmosphere. X -ray diffraction spectra show that the $MgCNi_3$ structure is maintained up to x=18. With increasing x, the lattice constant (or the Ni-Ni distance) decreases. Magnetic susceptibility measurement shows that $T_{c}$ decreases systematically with x and becomes ~2K at x =0.18. Surprisingly, the transition width remains sharp (~0.3K). Under some assumptions, we estimate the coupling constant in the McMillan formula as a function of x which we interpret in terms of the BCS theory.y.y.y.

  • PDF

Dynamic stability analysis of a rotary GPLRC disk surrounded by viscoelastic foundation

  • Liang, Xiujuan;Ji, Haixu
    • Geomechanics and Engineering
    • /
    • v.24 no.3
    • /
    • pp.267-280
    • /
    • 2021
  • The research presented in this paper deals with dynamic stability analysis of the graphene nanoplatelets (GPLs) reinforced composite spinning disk. The presented small-scaled structure is simulated as a disk covered by viscoelastic substrate which is two-parametric. The centrifugal and Coriolis impacts due to the spinning are taken into account. The stresses and strains would be obtained using the first-order-shear-deformable-theory (FSDT). For Poisson ratio, as well as various amounts of mass densities, the mixture rule is employed, while a modified Halpin-Tsai model is inserted for achieving the elasticity module. The structure's boundary conditions (BCs) are obtained employing GPLs reinforced composite (GPLRC) spinning disk's governing equations applying principle of Hamilton which is based on minimum energy and ultimately have been solved employing numerical approach called generalized-differential quadrature-method (GDQM). Spinning disk's dynamic properties with different boundary conditions (BCs) are explained due to the curves drawn by Matlab software. Also, the simply-supported boundary conditions is applied to edges 𝜃=𝜋/2, and 𝜃=3𝜋/2, while, cantilever, respectively, is analyzed in R=Ri, and R0. The final results reveal that the GPLs' weight fraction, viscoelastic substrate, various GPLs' pattern, and rotational velocity have a dramatic influence on the amplitude, and vibration behavior of a GPLRC rotating cantilevered disk. As an applicable result in related industries, the spinning velocity impact on the frequency is more effective in the higher radius ratio's amounts.

Nonlocality effects of MgB2 superconductor

  • Jeong Hun Yang;Jong Su You;Soo Kyung Lee;Kyu Jeong Song
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.3
    • /
    • pp.22-27
    • /
    • 2023
  • Magnetic properties of MgB2 superconducting powder were investigated. M(H), the magnetic field H dependence of magnetization M, was measured and analyzed using a PPMS instrument. The MgB2 superconducting powder showed high critical current density Jc > ~ 107 A/cm2 and clean limit superconducting properties. The equilibrium magnetization Meq properties of MgB2 powders exhibiting various superconducting properties were studied. We find that the equilibrium magnetization Meq(H) properties of MgB2 powders showing conventional BCS properties deviate from the predictions of the standard local-London theory at temperatures below T = 19 K and are in good agreement with the generalized nonlocal-London theory. Nonlocal-London analysis was used to determine and analyze the nonlocal parameters. The temperature dependence of the London penetration depth values λ(T) was studied.

General equations for free vibrations of thick doubly curved sandwich panels with compressible and incompressible core using higher order shear deformation theory

  • Nasihatgozar, M.;Khalili, S.M.R.;Fard, K. Malekzadeh
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.151-176
    • /
    • 2017
  • This paper deals with general equations of motion for free vibration analysis response of thick three-layer doubly curved sandwich panels (DCSP) under simply supported boundary conditions (BCs) using higher order shear deformation theory. In this model, the face sheets are orthotropic laminated composite that follow the first order shear deformation theory (FSDT) based on Rissners-Mindlin (RM) kinematics field. The core is made of orthotropic material and its in-plane transverse displacements are modeled using the third order of the Taylor's series extension. It provides the potentiality for considering both compressible and incompressible cores. To find these equations and boundary conditions, Hamilton's principle is used. Also, the effect of trapezoidal shape factor for cross-section of curved panel element ($1{\pm}z/R$) is considered. The natural frequency parameters of DCSP are obtained using Galerkin Method. Convergence studies are performed with the appropriate formulas in general form for three-layer sandwich plate, cylindrical and spherical shells (both deep and shallow). The influences of core stiffness, ratio of core to face sheets thickness and radii of curvatures are investigated. Finally, for the first time, an optimum range for the core to face sheet stiffness ratio by considering the existence of in-plane stress which significantly affects the natural frequencies of DCSP are presented.

The influence of Winkler-Pasternak elastic foundations on the natural frequencies of imperfect functionally graded sandwich beams

  • Avcar, Mehmet;Hadji, Lazreg;Akan, Recep
    • Geomechanics and Engineering
    • /
    • v.31 no.1
    • /
    • pp.99-112
    • /
    • 2022
  • The present study examines the natural frequencies (NFs) of perfect/imperfect functionally graded sandwich beams (P/IP-FGSBs), which are composed of a porous core constructed of functionally graded materials (FGMs) and a homogenous isotropic metal and ceramic face sheets resting on elastic foundations. To accomplish this, the material properties of the FGSBs are assumed to vary continuously along the thickness direction as a function of the volume fraction of constituents expressed by the modified rule of the mixture, which includes porosity volume fraction represented using four distinct types of porosity distribution models. Additionally, to characterize the reaction of the two-parameter elastic foundation to the Perfect/Imperfect (P/IP) FGSBs, the medium is assumed to be linear, homogeneous, and isotropic, and it is described using the Winkler-Pasternak model. Furthermore, the kinematic relationship of the P/IP-FGSBs resting on the Winkler-Pasternak elastic foundations (WPEFs) is described using trigonometric shear deformation theory (TrSDT), and the equations of motion are constructed using Hamilton's principle. A closed-form solution is developed for the free vibration analysis of P/IP-FGSBs resting on the WPEFs under four distinct boundary conditions (BCs). To validate the new formulation, extensive comparisons with existing data are made. A detailed investigation is carried out for the effects of the foundation coefficients, mode numbers (MNs), porosity volume fraction, power-law index, span to depth ratio, porosity distribution patterns (PDPs), skin core skin thickness ratios (SCSTR), and BCs on the values of the NFs of the P/IP-FGSBs.

Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity

  • Hussain, Muzamal;Naeem, Muhammad Nawaz;Tounsi, Abdelouahed;Taj, Muhammad
    • Advances in nano research
    • /
    • v.7 no.6
    • /
    • pp.431-442
    • /
    • 2019
  • Vibration analysis of carbon nanotubes (CNTs) is very essential field owing to their many promising applications in tiny instruments. In current study, the Eringen's nonlocal elasticity theory with clamped-clamped and clamped-free end conditions is utilized for the vibration analysis of armchair and zigzag SWCNTs. The Fourier method is utilized to solve the ordinary differential equation. The motion equation for this system is developed using a novel wave propagation method. Complex exponential functions have been used and the axial model depends on BCs that has been described at the edges of CNTs. The behavior of different nonlocal parameters is considered to find the vibrational frequency of SWCNTs. It is exhibited that the effect of frequencies against aspect ratio by varying the bending rigidity. It has been investigated that by increasing the nonlocal parameter decreases the frequencies and on increasing the aspect ratio increases the frequencies for both the tubes. To generate the fundamental natural frequencies of SWCNTs, computer software MATLAB engaged. The numerical results are validated with existing open text. Since the percentage of error is negligible, the model has been concluded as valid.