• Title/Summary/Keyword: BCL-2 family

Search Result 230, Processing Time 0.047 seconds

ABT-737 ameliorates docetaxel resistance in triple negative breast cancer cell line

  • Hwang, Eunjoo;Hwang, Seong-Hye;Kim, Jongjin;Park, Jin Hyun;Oh, Sohee;Kim, Young A;Hwang, Ki-Tae
    • Annals of Surgical Treatment and Research
    • /
    • v.95 no.5
    • /
    • pp.240-248
    • /
    • 2018
  • Purpose: This study aimed to validate the synergistic effect of ABT-737 on docetaxel using MDA-MB-231, a triple negative breast cancer (TNBC) cell line overexpressing B-cell lymphoma-2 (Bcl-2). Methods: Western blot analysis was performed to assess expression levels of Bcl-2 family proteins and caspase-related molecules. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell cycle distribution was determined by flow cytometry analysis. Benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone (z-VAD-fmk) was used for pretreatment to assess the role of caspases. Results: Cell viability of MDA-MB-231 after combination treatment with ABT-737 and docetaxel was significantly lower than that after docetaxel or ABT-737 monotherapy based on MTT assay (both P < 0.001), with a combination index of 0.41. The proportion of sub-G1 population after combination treatment was significantly higher than that after docetaxel or ABT-737 monotherapy (P = 0.001, P = 0.003, respectively). Pretreatment with z-VAD-fmk completely restored cell viability of MDA-MB-231 from apoptotic cell death induced by combination therapy (P = 0.001). Although pro-caspase-8 or Bid did not show significant change in expression level, pro-casepase-9 showed significantly decreased expression after combination treatment. Cleaved caspase-3 showed increased expression while poly (ADP-ribose) polymerase cleavage was induced after combination treatment. However, hypoxia-inducible factor 1-alpha and aldehyde dehydrogenase 1 totally lost their expression after combination treatment. Conclusion: Combination of ABT-737 with docetaxel elicits synergistic therapeutic effect on MDA-MB-231, a TNBC cell line overexpressing Bcl-2, mainly by activating the intrinsic pathway of apoptosis. Therefore, adjunct of ABT-737 to docetaxel might be a new therapeutic option to overcome docetaxel resistance of TNBCs overexpressing Bcl-2.

Adequate concentration of B cell leukemia/lymphoma 3 (Bcl3) is required for pluripotency and self-renewal of mouse embryonic stem cells via downregulation of Nanog transcription

  • Kang, Songhwa;Yun, Jisoo;Kim, Da Yeon;Jung, Seok Yun;Kim, Yeon Ju;Park, Ji Hye;Ji, Seung Taek;Jang, Woong Bi;Ha, Jongseong;Kim, Jae Ho;Baek, Sang Hong;Kwon, Sang-Mo
    • BMB Reports
    • /
    • v.51 no.2
    • /
    • pp.92-97
    • /
    • 2018
  • B cell leukemia/lymphoma 3 (Bcl3) plays a pivotal role in immune homeostasis, cellular proliferation, and cell survival, as a co-activator or co-repressor of transcription of the $NF-{\kappa}B$ family. Recently, it was reported that Bcl3 positively regulates pluripotency genes, including Oct4, in mouse embryonic stem cells (mESCs). However, the role of Bcl3 in the maintenance of pluripotency and self-renewal activity is not fully established. Here, we report the dynamic regulation of the proliferation, pluripotency, and self-renewal of mESCs by Bcl3 via an influence on Nanog transcriptional activity. Bcl3 expression is predominantly observed in immature mESCs, but significantly decreased during cell differentiation by LIF depletion and in mESC-derived EBs. Importantly, the knockdown of Bcl3 resulted in the loss of self-renewal ability and decreased cell proliferation. Similarly, the ectopic expression of Bcl3 also resulted in a significant reduction of proliferation, and the self-renewal of mESCs was demonstrated by alkaline phosphatase staining and clonogenic single cell-derived colony assay. We further examined that Bcl3-mediated regulation of Nanog transcriptional activity in mESCs, which indicated that Bcl3 acts as a transcriptional repressor of Nanog expression in mESCs. In conclusion, we demonstrated that a sufficient concentration of Bcl3 in mESCs plays a critical role in the maintenance of pluripotency and the self-renewal of mESCs via the regulation of Nanog transcriptional activity.

The Effect of Woohwangcheongsim-won on Delayed Neuronal Death in Hypoxia (저산소증으로 유발된 지연성 신경세포사에 우황청심원이 미치는 영향)

  • 김민석;정승현;신길조;문일수;이원철
    • The Journal of Korean Medicine
    • /
    • v.23 no.3
    • /
    • pp.145-163
    • /
    • 2002
  • Objectives: The purpose of this investigation was to evaluate the effects of Woohwangcheongsim-won and to study the mechanism for neuronal death protection in hypoxia with Embryonic day 20 (E20) cortical cells of a rat (Sprague Dawley). Methods: E20 cortical cells were dissociated in neurobasal media and grown for 14 days in vitro (DIV). On 14 DIV, Woohwangcheongsim-won was added to the culture media for 24 hrs or 72 hrs. On 17 DIV, cells were given a hypoxic shock and further incubated in normoxia for another three days. On 20 DIV, Woohwangcheongsim-won's effects for neuronal death protection were evaluated by LDH assay, propidium iodide stain and phospho-H2AX immunostain and the mechanisms were studied by Bcl-2, Bak, Bax, caspase family, PKCα, ca1pain I. Results & Conclusions : 1. This study indicated that Woohwangcheongsim-won's effects for neuronal death protection in hypoxia were confirmed by LDH assay, propidium iodide stain and phospho-H2AX immunostain in culture method of Embryonic day 20(E20) cortical neuroblasts. 2. Woohwangcheongsim-won's mechanisms for neuronal death protection in hypoxia are to reduce the membrane damage fraction, to restrain DNA truncate, to restrain inflow of cytochrome c into cellularity caused by Bak diminution, to reduce the caspase cascade intiator caspase-8 and the effector caspase-3, to reduce the calpain I activity and to increase PKCand its activity in the membrane fraction. (J Korean Oriental Moo 2002;23(3):145~163)

  • PDF

RUNNING TITLE: APOPTOTIC EFFECT OF MYCOLACTONE IN SCC15 CELLS (구강편평세포암종 세포주 SCC15에서 Mycolactone에 의한 apoptosis 효과)

  • Kim, Jae-Woo;Song, Jae-Chul;Lee, Hee-Kyung;Lee, Tae-Yoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.27 no.6
    • /
    • pp.511-518
    • /
    • 2001
  • The effect of mycolactone, a recently reported apoptosis-inducing factor, was investigated in SCC15 oral squamous cell carcinoma(OSCC) cell line. Mycolactone rapidly induced cell death in OSCC cells in 2days, which was similar to that found in apoptotic cell such as detaching from culture plate and rounding-up of cells. Apoptotic cells were increased 4hrs after mycolactone treatment and more than half of cells showed apoptosis after 72hrs. Caspase 3 activation a biochemical evidence of apoptosis, was determined by Western blotting. Caspase 3 activation was started at 2hrs that lasted until 8hrs after mycolactone treatment. The expression of bcl-2 family genes was determined to explain the mechanism of apoptosis found in OSCC cells. The expressions of bad, bak, and bax (pro-apoptotic genes) and bcl-w and bcl-2 genes (anti-apoptotic genes) were not changed by mycolactone treatment. The expression of bcl-xi was decreased 8 hrs after mycolactone treatment. Mcl-1 expression was initially increased at 2 hrs which was decreased 8 hrs after mycolactone treatment. The down-regulation of these two anti-apoptotic genes might explain the mycolactone-induced apoptosis in OSCC cells. In this study, mycholactone was revealed to induce cell death in OSCC cells apoptosis and the apoptosis mechanism of OSCC cells was shown to be down-regulation of anti-apoptotic genes, bcl-xi and mcl-1. These results suggested the applicability of mycolactone for the development of an anti-cancer drug candidate by inducing apoptosis of OSCC cancer cell.

  • PDF

Regulation of Bcl-2 Family and Cyclooxygenases by Furanoterpenoids Isolated from a Marine Sponge Swcotragus nt. in Human Lung Cancer A549 Cells. (인체폐암세포의 Bcl-2 family 및 cyclooxygenases의 발현에 미치는 해면동물 Sarcotragus sp. 유래 furanoterpenoids의 영향)

  • 최영현;최혜정;김남득;정지형
    • Journal of Life Science
    • /
    • v.14 no.3
    • /
    • pp.445-452
    • /
    • 2004
  • We investigated the cytotoxic effects of seven furanoterpenoids 〔sarcotin A, epi-sarcotin A, ircinin-1, epi-sarcotrine B, sarcotin I, (8E, l3Z, 20Z)-strobilinin/(7E,l3Z, 20Z)-felixinin and (7E,12E,18R,20Z)-variabilin〕 isolated from the sponge Sarcotragus sp. (the order Dictyoceratida) on the growth of A549 human lung carcinoma cells. MTT data revealed that sarcotin A and (7E,12E,18R,20Z)-variabilin exhibited higher potencies on the anti-proliferative activities than the other compounds in A549 cells. The growth inhibition by treatment with compounds (especially epi-sarcotin A, ircinin-1 and epi-sarcotrine B) were associated with the induction of apoptotic cell death through the concentration-dependent increase of Bax/Bcl-2 ratio in a p53-dependent or independent pathway Additionally, epi-sarcotin A and ircinin-1 strongly inhibited the levels of cyclooxygenase (COX)-2 expression without alteration of COX-1. Taken together, the results suggest that the furanoterpenoids from the marine sponge have strong potentials as candidates for anti-cancer drugs.

The Effect of Woohwangcheongsim-won for Delayed Neuronal Death in OGD(Oxygen-Glucose Deprivation) Model (배양 대뇌신경세포의 저당-저산소증 모델에서 우황청심원에 의한 세포사 방지 연구)

  • 원철환;정승현;신길조;문일수;이원철
    • The Journal of Korean Medicine
    • /
    • v.23 no.4
    • /
    • pp.125-139
    • /
    • 2002
  • Objectives: The purpose of this investigation is to evaluate the effects of Woohwangcheongsim-won and to study the mechanism for neuronal death protection in OGD (oxygen-glucose deprivation) model with embryonic day 20 (E20) cortical cells of a rat (Sprague Dawley). Methods: E20 cortical cells were dissociated in neurobasal media and grown for 14 days in vitro (DIV). On 14 DIV, Woohwangcheongsim-won was added to the culture media for 72 hrs. On 17 DIV, cells were given an oxygen-glucose deprivation shock (2hrs and 4hrs) and further incubated in normoxia for another three days. On 20 DIV, Woohwangcheongsim-won's effects for neuronal death protection were evaluated by LDH assay and the mechanisms were studied by Bcl-2, Bak, Bax, caspase family. Results & Conclusions: 1. This study indicates that Woohwangcheongsim-won's effects for neuronal death protection in OGD model is confirmed by LDH assay in culture method of embryonic day 20(E20) cortical neuroblasts. 2. Woohwangcheongsim-won's mechanisms for neuronal death protection in OGD model are to restrain inflow of cytochrome c into cellularity caused by Bcl-2 increase (2hrs and 4hrs), to reduce the caspase cascade initiator caspase-8 (4hrs).

  • PDF

Immunohistochemical Analysis of BAD Protein Expression in Gastric Carcinomas (위암의 BAD 단백질의 발현)

  • Yoo, Nam-Jin;Lee, Jong-Woo;Park, Won-Sang;Lee, Jung-Young;Lee, Sug-Hyung
    • Journal of Gastric Cancer
    • /
    • v.3 no.2
    • /
    • pp.75-79
    • /
    • 2003
  • Purpose: Evidence exists that dysregulation of apoptosis is involved in the pathogenesis of cancer development. The Bcl-$x_{L}$/Bcl-2-associated death promoter (BAD), a member of the Bcl-2 family, is a critical regulatory component of the intrinsic cell-death pathway that exerts its pro-apoptotic effect upon heterodimerization with anti-apoptotic proteins Bcl-2 and Bcl-$X_{L}$. Expression of the BAD protein has been reported in several cancer types, but not in stomach cancer. The aim of this study was to explore the expression status of the BAD protein in gastric carcinomas. Materials and Methods: In the current study, we analyzed the expression of the BAD protein in 60 advanced gastric adenocarcinomas by using immunohistochemistry and a tissue microarray approach. Results: Immunopositivity (defined as $\geq\30\%$) was observed for the BAD protein in 57 ($95\%$) of the 60 cancers. Normal gastric mucosal cells showed weaker expressions of the BAD protein than gastric carcinomas. Conclusion: Taken together, these results suggest that stomach cancer cells in vivo may need BAD protein expression for apoptosis. Also, the higher expression of the BAD protein in stomach cancer cells than in normal gastric mucosal cells suggests that apoptosis might be easily triggered in susceptible stomach cancer cells, thereby producing selective pressure to make more apoptosis-resistant cells during tumor development.

  • PDF

Expression of Proapoptotic Bcl-2 Family Member in the Mouse Ovary (I) (생쥐 난소에서 Bcl-2계 세포고사인자에 관한 연구 (I))

  • Lee, Yu-Il;Lee, Jin;Chun, Sang-Young
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.30 no.1
    • /
    • pp.47-55
    • /
    • 2003
  • Objectives: Bok, Bcl-2-related ovarian killer, is a proapoptotic Bcl-2 family protein identified in the ovary based on its dimerization with the antiapoptotic protein Mcl-1. The present study examined the hormonal regulation and localization of Bok messenger RNA levels in the mouse ovary during the follicle development. Methods: The animals were implanted subcutaneously with Silastic brand capsules containing the synthetic estrogen, DES at $21{\sim}23$ days of age. Ovaries were collected $1{\sim}3$ days after implantation for RNA analysis and in situ hybridization. Some mice were removed capsule for $1{\sim}2$ days to induce ovarian follicle apoptosis. Ovaries were also collected from 26 day-old immature mice at various times after treatment with 10 IU PMSG. Some mice received a single intraperitoneal injection of 10 IU hCG to induce ovulation, and ovaries were obtained at different time intervals for Northern blot and in situ hybridization analysis, respectively. Results: Treatment of immature mice with diethylstilbestrol (DES) for $24{\sim}48$ h increased ovarian Bok mRNA levels. Bok mRNA was remained the same levels in mice removed DES for $24{\sim}48$ h to induce apoptosis. High signals of Bok mRNA after DES treatment were detected in granulosa cells of early antral follicles. Treatment of immature mice with PMSG for 12 h increased markedly ovarian Bok mRNA expression which was detected mainly in preantral and atretic follicles. Interestingly, low levels of Bok mRNA were also expressed in granulosa cells of preovulatory follicles. Treatment of PMSGprimed mice with hCG stimulated strongly ovarian Bok mRNA expression at $6{\sim}9$ h. At that time, Bok mRNA was expressed in granulosa cells of atretic and small growing follicles. Conclusion: These results demonstrate that Bok is one of proapoptotic Bcl-2 members expressed in early growing and atretic follicles during the ovarian follicular development. Gonadotropins induce a transient increase of Bok gene expression in granulosa cells of preantral and preovulatory follicles indicating some role in the ovulatory process.

Cloning and Functional Studies of Pro-Apoptotic MCL-1ES BH3M (세포사멸을 유도하는 새로운 단백질인 MCL-1ES BH3M의 클로닝 및 기능연구)

  • Kim, Jae-Hong;Park, Mira;Ha, Hye-Jeong;Lee, Kangseok;Bae, Jeehyeon
    • Development and Reproduction
    • /
    • v.12 no.3
    • /
    • pp.297-303
    • /
    • 2008
  • BCL-2 family members are essential protein for the regulation of cell death and survival consisting both antiapoptotic and pro-apoptotic proteins. In the present study, we designed and cloned a new apoptotic molecule MCL-1ES BH3M coding a modified protein of MCL-1L. Compared to MCL-1L protein, MCL-1ES BH3M lacks the PEST motifs known to be involved in MCL-1L protein degradation and has seven mutated residues in BH3 domain critical for dimerization with BCL-2 family members. Overexpression of MCL-1ES BH3M induced death of different cells, and its cell killing effect was not blocked by forced expression of the pro-survival protein MCL-1L. Expression of MCL-1ES BH3M protein led to the activation of caspase 9 and caspase 3, suggesting apoptotic cell death, and confocal fluorescent microscopic analyses showed that MCL-1ES BH3M was partially localized in mitochondria. In conclusion, we reported a new apoptotic molecule and determined its cell death activity in cells.

  • PDF

Momordica charantia Protects against Cytokine-induced Apoptosis in Pancreatic $\beta$-Cells

  • Kim, Kyong;Kim, Hye-Young
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.947-952
    • /
    • 2008
  • The unripe fruit of Momordica charantia (MC) has been shown to possess antidiabetic activity. However, the mechanism of its antidiabetic action has not been fully understood. In this study, the effects of the aqueous ethanolic extract of MC (AEE-MC) were evaluated on the apoptosis in pancreatic $\beta$-cells treated with a combination of the cytokines, interleukin (IL)-$1{\beta}$, tumor necrosis factor (TNF)-$\alpha$, and interferon (IFN)-$\gamma$. In MIN6N8 cells, the inhibitory effect of AEE-MC was significantly observed at 2 to 50 ${\mu}g/mL$: a 26.2 to 55.6% decrease of cytoplasmic DNA fragments quantified by an immunoassay. The molecular mechanisms, by which AEE-MC inhibited $\beta$-cell apoptosis, appeared to involve the inhibition on the expression of p21, Bax, and Bad, the up-regulation of Bcl-2 and Bcl-$X_L$, and the inhibition on the cleavage of caspase-9, -7, and -3 and poly (ADP-ribose) polymerase. This study suggests that MC may inhibit cytokine-induced apoptosis in $\beta$-cells and, thus, may contribute via this action to the antidiabetic influence in diabetes.