• Title/Summary/Keyword: BBB score

Search Result 12, Processing Time 0.016 seconds

Optimal Ratio of Wnt3a Expression in Human Mesenchymal Stem Cells Promotes Axonal Regeneration in Spinal Cord Injured Rat Model

  • Yoon, Hyung Ho;Lee, Hyang Ju;Min, Joongkee;Kim, Jeong Hoon;Park, Jin Hoon;Kim, Ji Hyun;Kim, Seong Who;Lee, Heuiran;Jeon, Sang Ryong
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.5
    • /
    • pp.705-715
    • /
    • 2021
  • Objective : Through our previous clinical trials, the demonstrated therapeutic effects of MSC in chronic spinal cord injury (SCI) were found to be not sufficient. Therefore, the need to develop stem cell agent with enhanced efficacy is increased. We transplanted enhanced Wnt3-asecreting human mesenchymal stem cells (hMSC) into injured spines at 6 weeks after SCI to improve axonal regeneration in a rat model of chronic SCI. We hypothesized that enhanced Wnt3a protein expression could augment neuro-regeneration after SCI. Methods : Thirty-six Sprague-Dawley rats were injured using an Infinite Horizon (IH) impactor at the T9-10 vertebrae and separated into five groups : 1) phosphate-buffered saline injection (injury only group, n=7); 2) hMSC transplantation (MSC, n=7); 3) hMSC transfected with pLenti vector (without Wnt3a gene) transplantation (pLenti-MSC, n=7); 4) hMSC transfected with Wnt3a gene transplantation (Wnt3a-MSC, n=7); and 5) hMSC transfected with enhanced Wnt3a gene (1.7 fold Wnt3a mRNA expression) transplantation (1.7 Wnt3a-MSC, n=8). Six weeks after SCI, each 5×105 cells/15 µL at 2 points were injected using stereotactic and microsyringe pump. To evaluate functional recovery from SCI, rats underwent Basso-Beattie-Bresnahan (BBB) locomotor test on the first, second, and third days post-injury and then weekly for 14 weeks. Axonal regeneration was assessed using growth-associated protein 43 (GAP43), microtubule-associated protein 2 (MAP2), and neurofilament (NF) immunostaining. Results : Fourteen weeks after injury (8 weeks after transplantation), BBB score of the 1.7 Wnt3a-MSC group (15.0±0.28) was significantly higher than that of the injury only (10.0±0.48), MSC (12.57±0.48), pLenti-MSC (12.42±0.48), and Wnt3a-MSC (13.71±0.61) groups (p<0.05). Immunostaining revealed increased expression of axonal regeneration markers GAP43, MAP2, and NF in the Wnt3a-MSC and 1.7 Wnt3a-MSC groups. Conclusion : Our results showed that enhanced gene expression of Wnt3a in hMSC can potentiate axonal regeneration and improve functional recovery in a rat model of chronic SCI.

Neuroprotective Effect of Anthocyanin on Experimental Traumatic Spinal Cord Injury

  • Kim, Kyoung-Tae;Nam, Taek-Kyun;Park, Yong-Sook;Kim, Young-Baeg;Park, Seung-Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.49 no.4
    • /
    • pp.205-211
    • /
    • 2011
  • Objective : We investigated the neuroprotective effect of anthocyanin, oxygen radical scavenger extracted from raspberries, after traumatic spinal cord injury (SCI) in rats. Methods : The animals were divided into two groups : the vehicle-treated group (control group, n=20) received an oral administration of normal saline via stomach intubation immediately after SCI, and the anthocyanin-treated group (AT group, n=20) received 400 mg/kg of cyanidin 3-O-${\beta}$-glucoside (C3G) in the same way. We compared the neurological functions, superoxide expressions and lesion volumes in two groups. Results : At 14 days after SCI, the AT group showed significant improvement of the BBB score by $16.7{\pm}3.4%$, platform hang by $40.0{\pm}9.1%$ and hind foot bar grab by $30.8{\pm}8.4%$ (p<0.05 in all outcomes). The degree of superoxide expression, represented by the ratio of red fluorescence intensity, was significantly lower in the AT group ($0.98{\pm}0.38$) than the control group ($1.34{\pm}0.24$) (p<0.05). The lesion volume in lesion periphery was $32.1{\pm}2.4\;{\mu}L$ in the control and $24.5{\pm}2.3\;{\mu}L$ in the AT group, respectively (p<0.05), and the motor neuron cell number of the anterior horn in lesion periphery was $8.3{\pm}5.1$ cells/HPF in the control and $13.4{\pm}6.3$ cells/HPF in the AT group, respectively (p<0.05). Conclusion : Anthocyanin seemed to reduce lesion volume and neuronal loss by its antioxidant effect and these resulted in improved functional recovery.