• Title/Summary/Keyword: BAX and BCL-2 expression

Search Result 654, Processing Time 0.024 seconds

Inhibition of Cell Proliferation and Induction of Apoptosis by Ethanolic Extract of Lespedeza cuneata G. Don in Human Colorectal Cancer HT-29 cells (야관문의 에탄올 추출물에 의한 대장암세포의 성장억제 및 세포사멸유도)

  • Zhao, Qian;Kim, Yeah-Un;Han, In-Hwa;Yun, Jung-Mi
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.6
    • /
    • pp.911-917
    • /
    • 2016
  • Lespedeza cuneata G. Don is an edible perennial herb used in traditional Korean medicine. We investigated the anti-proliferative properties and mechanism of L. cuneata extract. The ethanolic extract of L. cuneata dose-and time-dependently inhibited human colorectal cancer cell proliferation. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay was used to test the effect of the extract on proliferation of HT-29 colorectal cancer cells. The extract inhibited HT-29 cell proliferation with an $IC_{50}$ value of $554.26{\pm}8.81{\mu}g/mL$. L. cuneata extract suppressed production of pro-inflammatory cytokines interleukin-6 and tumor necrosis $factor-{\alpha}$. Apoptosis was evaluated by analysis of DNA fragmentation, poly(ADP-ribose) polymerase cleavage, caspase-3 activity, and protein expression of pro-apoptotic (Bax) and anti-apoptotic (Bcl-2). Our results demonstrated that the extract induced DNA fragmentation and characteristic morphological changes associated with apoptosis in HT-29 colorectal cancer cells. The extract also time- and dose-dependently up-regulated expression of the Bax and down-regulated expression of the Bcl-2. Furthermore, the extract dose- and time-dependently enhanced caspase-3 activity. Our findings provide evidence that L. cuneata extract may mediate its anti-proliferative effect via modulation of apoptosis.

Anti-cancer activity of the ethylacetate fraction from Orostachys japonicus in A549 human lung cancer cells by induction of apoptosis and cell cycle arrest (인체 폐암 세포에 대한 와송 유래 에틸아세테이트 분획 생리 활성 물질의 세포사멸 유도 및 세포주기 억제 항암활성)

  • Kwon, Ji-Hye;Lee, Dong-Seok;Jung, Eun-Cheol;Kim, Hyeon-Mi;Kim, Su-Bin;Ryu, Deok-Seon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.1
    • /
    • pp.395-405
    • /
    • 2017
  • To confirm potential anti-cancer activities of ethylacetate (EtOAc) fraction from Orostachys japonicus on the A549 human lung cancer cells, this study examined. As a result of conducting MTS assay for measuring cell viability, the EtOAc fraction inhibited the proliferation of A549 cells in a dose-dependent manner. To investigate whether the inhibiting A549 cell viability was caused by apoptosis, this study analyzed chromatin condensation in A549 cells using DAPI staining. The morphological changes such as the formation of nuclear condensation were formed in a dose-dependent manner. Also, this study performed Annexin V-FITC staining for detecting phosphatidylinositol (PS). As a result of Annexin V-FITC staining to investigate level of early and late apoptosis, the apoptosis level treated with EtOAc fraction was higher than that of control. RT-PCR was performed to study the correlation between G2/M cell cycle arrest and cell cycle control genes. The anti-cancer activity of EtOAc fraction was accompanied by inhibition of CDK1, 4, cyclin B1 and D1 mRNA. This study also examined the expression of various marker proteins: p53, Bax, Bcl-2 and pro-caspase 3. Western blotting revealed that p53 and Bax proteins were up-regulated, and Bcl-2 and pro-caspase 3 proteins down-regulated in a time and dose-dependent manner.

Neonatal Rat Necrotizing Enterocolitis Model Adopting Oral Endotoxin and Hypoxia Exhibits Increased Apoptosis through Caspase-3 Activation (경구 내독소와 저산소로 유발된 신생쥐의 괴사성 장염모델에서 caspase-3 활성화를 통한 세포자멸사의 증가)

  • Lee, Yun-Kyoung;Kim, Ee-Kyung;Kim, Ji-Eun;Kim, Yoon-Joo;Son, Se-Hyung;Kim, Han-Suk;Kim, Beyong-Il;Choi, Jung-Hwan
    • Neonatal Medicine
    • /
    • v.17 no.1
    • /
    • pp.44-52
    • /
    • 2010
  • Purpose : The aim of this study was to develop a model for necrotizing enterocolitis (NEC) in the neonatal rat using endotoxin and hypoxia, a plausible insult in a neonatal intensive care and to investigate the role of apoptosis as the underlying mechanism. Methods : Newborn rats were given oral endotoxin and intermittent 8% hypoxia$\pm$caspase inhibitor. The intestinal histology was evaluated using hematoxylin-eosin staining. Apoptosis was analyzed with TUNEL staining and by measuring the caspase 3 activity in the intestinal lysates. IEC-6 cells were assessed for apoptosis and the expression of Bax, Bcl-2, Fas and FasL was measured after treatment with endotoxin and hypoxia. Results : Oral endotoxin (5 mg/kg) and exposure to 8% hypoxia of 60-min duration twice induced human NEC-like lesions in the rat intestine. Intestinal tissue revealed increased apoptosis and caspase-3 activity. After caspase inhibitor treatment, the grades of both apoptosis and NEC were significantly reduced. IEC-6 cells exhibited increased apoptosis and caspase 3 activity after endotoxin and hypoxia treatment and significantly increased Bax/Bcl- 2 ratio compared to control cells. Conclusion : This neonatal rat model of NEC which was induced by oral endotoxin and intermittent hypoxia showed increased apoptosis of intestinal epithelial cells that was mediated by caspase 3 activation. Our model has a advantage in the study of NEC because the use of much more clinically plausible insults may provide a suitable model for the investigation of its pathophysiology and therapeutic trials.

Inhibition of Tumor Growth in Vitro by a Combination of Extracts from Rosa Roxburghii Tratt and Fagopyrum Cymosum

  • Liu, Wei;Li, Su-Yi;Huang, Xin-En;Cui, Jiu-Jie;Zhao, Ting;Zhang, Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2409-2414
    • /
    • 2012
  • Objective: Traditional Chinese herbal medicines have a very long history. Rosa roxburghii Tratt and Fagopyrum cymosum are two examples of plants which are reputed to have benefits in improving immune responses, enhancing digestive ability and demonstrating anti-aging effects. Some evidence indicates that herbal medicine soups containing extracts from the two in combination have efficacy in treating malignant tumors. However, the underlying mechanisms are far from well understood. The present study was therefore undertaken to evaluate anticancer effects and explore molecular mechanisms in vitro. Methods: Proliferation and apoptosis were assessed with three carcinoma cell lines (human esophageal squamous carcinoma CaEs-17, human gastric carcinoma SGC-7901 and pulmonary carcinoma A549) by MTT assay and flow cytometry, respectively, after exposure to extract from Rosa roxburghii Tratt (CL) and extract from Fagopyrum cymosum (FR). $IC_{30}$ of CL and FR were obtained by MTT assay. Tumor cells were divided into four groups : control with no exposure to CL or FR; CL with $IC_{30}$ CL; FR with $IC_{30}$ FR; CL+FR group with 1/2 ($IC_{30}$ CL + $IC_{30}$ FR). RT-PCR and Western blot analysis were used to detect the expression of Ki-67, Bax and Bcl-2 at mRNA and protein levels. Results: Compared with the CL or FR groups, the combination of CL+FR showed significant inhibition of cell growth and increase in apoptosis; the mRNA and protein expression levels of Ki-67 and Bcl-2 in CL+FR group were all greatly decreased, while the expression of Bax was markedly increased. Conclusions: These results indicate that the synergistic antitumor effects of combination of CL and FR are related to inhibition of proliferation and induction of apoptosis.

Hesperidin Induces Apoptosis in SNU-668, Human Gastric Cancer Cells

  • Park, Hae-Jeong;Ra, Je-Hyun;Han, Mi-Young;Chung, Joo-Ho
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.1
    • /
    • pp.31-35
    • /
    • 2007
  • Hesperidin, known as a flavonoid constituent of citrus, has been known to reduce the proliferation of several cancer cells. We investigated whether hesperidin-induced cell death on SNU-668, human gastric cancer cells. The cytotoxicity of hesperidin on SNU-668 cells was determined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay at the concentration of 1, 10, 50, and 100 ${\mu}M$. Cell viability by hesperidin was 53.18$\pm$2.85% of control value at 100 ${\mu}M$. The cell death by hesperidin showed apoptotic features, which were confirmed using a combination of 4, 6-diamidino-2-phenylindole (DAPI) staining and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay. In the apoptosis-regulating genes, treatment of hesperidin decreased mRNA expression of B-cell CLL/lymphoma 2 (BCL2), whereas expression of BCL2-associated X protein (BAX) was increased. The mRNA expression and the activity of caspase3 (CASP3), a major apoptotic factor, was significantly increased by hesperidin treatment. These results suggest that hesperidin could induce apoptosis through CASP3 activation on SNU-668, human gastric cancer cells.

Modulation of Cytotoxicity by Nitric Oxide Donors during Treatment of Glioma with Anticancer Drugs

  • Park, Jeong-Jae;Kang, Jong-Sool;Lee, Hyun-Sung;Lee, Jong-Soo;Lee, Young-Ha;Youm, Jin-Young
    • Journal of Korean Neurosurgical Society
    • /
    • v.38 no.5
    • /
    • pp.366-374
    • /
    • 2005
  • Objective : Nitric oxide[NO] is implicated in a wide range of biological processes in tumors and is produced in glioma. To investigate the role of NO and its interaction with the tumoricidal effects of anticancer drugs, we study the antitumor activities of NO donors, with or without anticancer drugs, in human glioma cell lines. Methods : U87MG and U373MG cells were treated with the NO donors sodium nitroprusside[SNP] and S-nitroso-N-acetylpenicillamine[SNAP], alone or in combination with the anticancer drugs 1,3-bis[2-chloroethyl]-1-nitrosourea[BCNU] and cisplatin. Cell viability, cell proliferation, DNA fragmentation, nitrite level, and the expression of Bcl-2 and Bax were determined. Results : NO was markedly increased after treatment with SNP or SNAP; however, the addition of the anticancer drugs did not significantly affect NO production NO donors or anticancer drugs reduced glioma cell viability and, in combination, acted synergistically to further decrease cell viability in a dose- and time-dependent manner. Cell proliferation was inhibited and apoptosis were enhanced by combined treatment. Bax expression was increased by combined treatment, whereas Bcl-2 expression was reduced. The antitumor cytotoxicity of NO donors and anticancer drugs differed according to cell type. Conclusion : BCNU or cisplatin can inhibit cell viability and proliferation of glioma cells and can induce apoptosis. These effects are further enhanced by the addition of a NO donor which modulates the antitumor cytotoxicity of chemotherapy depending on cell type. Further biological, chemical, and toxicological studies of NO are required to clarify its mechanism of action in glioma.

Molecular Mechanism Underlying Hesperetin-induced Apoptosis by in silico Analysis and in Prostate Cancer PC-3 Cells

  • Sambantham, Shanmugam;Radha, Mahendran;Paramasivam, Arumugam;Anandan, Balakrishnan;Malathi, Ragunathan;Chandra, Samuel Rajkumar;Jayaraman, Gopalswamy
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.7
    • /
    • pp.4347-4352
    • /
    • 2013
  • Aim: To investigate the molecular mechanisms underlying triggering of apoptosis by hesperetin using in silico and in vitro methods. Methods: The mechanism of binding of hesperetin with NF-${\kappa}B$ and other apoptotic proteins like BAX, BAD, $BCL_2$ and $BCL_{XL}$ was analysed in silico using Schrodinger suite 2009. In vitro studies were also carried out to evaluate the potency of hesperetin in inducing apoptosis using the human prostate cancer PC-3 cell line. Results: Hesperetin was found to exhibit high-affinity binding resulting from greater intermolecular forces between the ligand and its receptor NF-${\kappa}B$ (-7.48 Glide score). In vitro analysis using MTT assay confirmed that hesperetin reduced cell proliferation ($IC_{50}$ values of 90 and $40{\mu}M$ at 24 and 48h respectively) in PC-3 cells. Hesperetin also downregulated expression of the anti-apoptotic gene $BCL_{XL}$ at both mRNA and protein levels and increased the expression of pro-apoptotic genes like BAD at mRNA level and BAX at mRNA as well as protein levels. Conclusion: The results suggest that hesperetin can induce apoptosis by inhibiting NF-${\kappa}B$.

Effects of Hominis Placenta on the Growth of Human Uterine Myoma Cells and Cell Apoptosis (자하거(紫河車)가 자궁근종세포(子宮筋腫細胞)의 성장억제(成長抑制)와 세포자멸사(細胞自滅死)에 미치는 영향(影響))

  • Wee, Hyo-Sun;Lee, Jin-Moo;Lee, Chang-Hoon;Cho, Jung-Hoon;Jang, Jun-Bock;Lee, Kyung-Sub
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.21 no.2
    • /
    • pp.38-48
    • /
    • 2008
  • Purpose: This study was conducted to investigate the effects of Hominis Placenta (紫河車) on the growth of human uterine myoma cells and cell apoptosis. Methods: Human uterine leiomyoma cells were cultured and treated with Hominis Placenta extract for 48 hours. Cell proliferation and activity was analyzed by MTT assay. We analyzed the cell cycle of human uterine myoma cells treated Hominis Placenta extract by FACS. Expression of proteins related to cell apoptosis (Bax, Bcl-2), cyclin-D1 and VEGF were evaluated by Western blotting method. Results: The human uterine myoma cells treated by Hominis Placenta extract didn't proliferate below the concentration of $10mg/m{\ell}$. And there was no remarkable difference on cell cycle analysis below the concentration of $10mg/m{\ell}$. The expression of Bax was decreased and the expression of Bcl-2 was increased after the treatment of Hominis Placenta extract. But the expressions of cyclin-D1 and VEGF were increased after the treatment of Hominis Placenta extract. Conclusion: This study suggests that Hominis Placenta induce uterine myoma cell apoptosis and have effect on the myoma cell proliferation in the concentraion below $10mg/m{\ell}$.

  • PDF

Inhaled Formaldehyde Induces Bone Marrow Toxicity via Oxidative Stress in Exposed Mice

  • Yu, Guang-Yan;Song, Xiang-Fu;Liu, Ying;Sun, Zhi-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5253-5257
    • /
    • 2014
  • Formaldehyde (FA) is an economically important chemical, and has been found to cause various types of toxic damage to the body. Formaldehyde-induced toxic damage involves reactive oxygen species (ROS) that trigger subsequent toxic effects and inflammatory responses, which may increase risk of cancer. Therefore, in the present study, we aimed to investigate the possible toxic mechanism in bone marrow caused by formaldehyde. In accordance with the principle of randomization, the mice were divided into four groups of 6 mice per group. One group was exposed to ambient air and the other three groups were exposed to different concentrations of formaldehyde (20, 40, $80mg/m^3$) for 15 days in the respective inhalation chambers, 2h a day. At the end of the 15-day experimental period, all mice were killed. Bone marrow cells were obtained. Some of those were used for the determination of blood cell numbers, bone marrow karyote numbers, CFU-F, superoxide dismutase (SOD) activity and malondialdehyde (MDA) content; others were used for the determination of mitochondrial membrane potential (MMP), cell cycle and Bcl-2, Bax, CytC protein expression. WBC and PLT numbers in median and high dose groups were obvious reduced, but there was no change on RBC numbers. There was also reduced numbers of bone marrow karyotes and CFU-F in the high dose group. SOD activity was decreased, but MDA content was increased. MMP and Bcl-2 expression were decreased with increasing formaldehyde concentration, while expression of Bax and Cyt C was increased. We also observed change in cell cycling, and found that there was S phase arrest in the high dose group. Our study suggested that a certain concentration of formaldehyde could have toxic effects on the hematopoietic system, with oxidative stress as a critical effect.

Ginsenosides Prevent High Glucose-induced Apoptosis in HT22 Cells (해마 세포주에서 인삼의 고포도당에 의한 세포사멸 차단효과)

  • Lee, Jeong-Chi;Jang, Seon-Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.5
    • /
    • pp.1019-1024
    • /
    • 2009
  • Diabetic neuropathy is characterized by the decrease of cell viability in neuron, which is induced by the hyperglycemia. HT22 cell is the neuron cell line originated from hippocampus. Ginsenosides have been reported to retain anti-diabetic effect. However, the preventive effect of ginsenosides in the condition of diabetic neuropathy was not elucidated. Thus, this study was conducted to examine the protective effect of ginsenoside total saponin (GTS), panoxadiol (PD), and panoxatriol (PT) in the high glucose-induced cell death of HT22 cells, an in vitro cellular model for diabetic neuropathy. In present study, high glucose increased lactate dehydrogenase(LDH) activity, the lipid peroxide(LPO) formation and induced the decrease of cell viability. These effects were completely prevented by the treatment of GTS, but partially prevented by the treatment of PD and PT. High glucose also increased the expression of Bax and cleaved form of caspase-3 but decreased that of Bcl-2. These effects of high glucose on Bax, Bcl-2 and cleaved form of caspase-3 were completely prevented by the treatment of GTS, but partially prevented by the treatment of PD and PT in HT22 cells. In conclusion, ginsenosides prevented high glucose-induced cell death of hippocampal neuron through the inhibition of oxidative stress and apoptosis in HT 22 cells.