Ginsenosides Prevent High Glucose-induced Apoptosis in HT22 Cells

해마 세포주에서 인삼의 고포도당에 의한 세포사멸 차단효과

  • Lee, Jeong-Chi (Department of Clinical Pathology, Gwangju Health College University) ;
  • Jang, Seon-Il (School of Alternative Medicine & Health Science, College of Alternative Medicine, Jeonju University)
  • 이정치 (광주보건대학 임상병리과) ;
  • 장선일 (전주대학교 대체의학대학 대체건강관리학부)
  • Published : 2009.10.25

Abstract

Diabetic neuropathy is characterized by the decrease of cell viability in neuron, which is induced by the hyperglycemia. HT22 cell is the neuron cell line originated from hippocampus. Ginsenosides have been reported to retain anti-diabetic effect. However, the preventive effect of ginsenosides in the condition of diabetic neuropathy was not elucidated. Thus, this study was conducted to examine the protective effect of ginsenoside total saponin (GTS), panoxadiol (PD), and panoxatriol (PT) in the high glucose-induced cell death of HT22 cells, an in vitro cellular model for diabetic neuropathy. In present study, high glucose increased lactate dehydrogenase(LDH) activity, the lipid peroxide(LPO) formation and induced the decrease of cell viability. These effects were completely prevented by the treatment of GTS, but partially prevented by the treatment of PD and PT. High glucose also increased the expression of Bax and cleaved form of caspase-3 but decreased that of Bcl-2. These effects of high glucose on Bax, Bcl-2 and cleaved form of caspase-3 were completely prevented by the treatment of GTS, but partially prevented by the treatment of PD and PT in HT22 cells. In conclusion, ginsenosides prevented high glucose-induced cell death of hippocampal neuron through the inhibition of oxidative stress and apoptosis in HT 22 cells.

Keywords

References

  1. Boulton, A.J. Diabetic neuropathy: classification, measurement and treatment. Curr Opin Endocrinol Diabetes Obes. 14: 141-145, 2007 https://doi.org/10.1097/MED.0b013e328014979e
  2. Bibbo, C., Patel, D.V. Diabetic neuropathy. Foot Ankle Clin. 11: 753-774, 2006 https://doi.org/10.1016/j.fcl.2006.06.011
  3. Kles, K.A., Vinik, A.I. Pathophysiology and treatment of diabetic peripheral neuropathy: the case for diabetic neurovascular function as an essential component. Curr Diabetes Rev. 2: 131-145, 2006 https://doi.org/10.2174/157339906776818569
  4. Misawa, S., Kuwabara, S., Ogawara, K., Kitano, Y., Yagui, K., Hattori, T. Hyperglycemia alters refractory periods in human diabetic neuropathy. Clin Neurophysiol. 115: 2525-2529, 2004 https://doi.org/10.1016/j.clinph.2004.06.008
  5. Gold, A.E., Deary, L.J., Jones, R.W., O'Hare, J.P., Reckless, J.P., Frier, B.M. Severe deteriorations in cognitive function and personality in patients with long-standing diabetes: A complication of diabetes or a consequence of treatment? Diabetes Med. 11: 499-505, 1994 https://doi.org/10.1111/j.1464-5491.1994.tb00314.x
  6. Jackson-Guilford, J., Leander, J.D., Nisenbaum, L.K. The effect of streptozotocin-induced diabetes on cell proliferation in the rat dentate gyrus. Neurosci Lett. 293: 91-94, 2000 https://doi.org/10.1016/S0304-3940(00)01502-0
  7. Li, Z.G., Zhang, W., Grunberger, G., Sima, A.A. Hippocampal neuronal apoptosis in type I diabetes. Brain Res. 946(2):221-231, 2002 https://doi.org/10.1016/S0006-8993(02)02887-1
  8. Camera, A., Hopps, E., Caimi, G. Diabetic microangiopathy: physiopathological, clinical and therapeutic aspects. Minerva Endocrinol. 32: 209-229, 2007
  9. Pop-Busui, R., Sima, A., Stevens, M. Diabetic neuropathy and oxidative stress. Diabetes Metab Res Rev. 22: 257-273, 2006 https://doi.org/10.1002/dmrr.625
  10. Kiefer, D., Pantuso, T. Panax ginseng. Am Fam Physician 68: 1539-1542, 2003
  11. Yip, T.T., Lau, C.N., Kong, Y.C., Yung, K.H., Kim, J.H., Woo, W.S. Ginsenoside compositions of Panax ginseng C.A. Meyer tissue culture and juice. Am J Chin Med. 13: 89-92, 1985 https://doi.org/10.1142/S0192415X85000137
  12. Waki, I., Kyo, H., Yasuda, M., Kimura, M. Effects of a hypoglycemic component of ginseng radix on insulin biosynthesis in normal and diabetic animals. J Pharmacobiodyn. 5: 547-554, 1982 https://doi.org/10.1248/bpb1978.5.547
  13. Xie, J.T., Mehendale, S.R., Wang, A., Han, A.H., Wu, J.A., Osinski, J., Yuan, C.S. American ginseng leaf: ginsenoside analysis and hypoglycemic activity. Pharmacol Res. 49: 113-117, 2004 https://doi.org/10.1016/j.phrs.2003.07.015
  14. Cho, W.C., Chung, W.S., Lee, S.K., Leung, A.W., Cheng, C.H., Yue, K.K. Ginsenoside Re of Panax ginseng possesses significant antioxidant and antihyperlipidemic efficacies in streptozotocin-induced diabetic rats. Eur J Pharmacol. 21: 173-179, 2006 https://doi.org/10.1016/j.ejphar.2006.08.056
  15. Schmidt, P., Holsboer, F., Spengler, D. Beta(2)-adrenergic receptors potentiate glucocorticoid receptor transactivation via G protein beta gamma-subunits and the phosphoinositide 3-kinase pathway. Mol Endocrinol. 15(4):553-564, 2001 https://doi.org/10.1210/me.15.4.553
  16. Post, A., Muller, M.B., Engelmann, M., Keck, M.E. Repetitive transcranial magnetic stimulation in rats: evidence for a neuroprotective effect in vitro and in vivo. Eur J Neurosci. 11(9):3247-3254, 1999 https://doi.org/10.1046/j.1460-9568.1999.00747.x
  17. Ohkawa, H., Ohishi, N., Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 95: 351-358, 1979 https://doi.org/10.1016/0003-2697(79)90738-3
  18. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72: 248-254, 1976 https://doi.org/10.1016/0003-2697(76)90527-3
  19. Sharifi, A.M., Mousavi, S.H., Farhadi, M., Larijani, B. Study of high glucose-induced apoptosis in PC12 cells: role of bax protein. J Pharmacol Sci. 104: 258-262, 2007 https://doi.org/10.1254/jphs.FP0070258
  20. Kumar, A., Kaundal, R.K., Iyer, S., Sharma, S.S. Effects of resveratrol on nerve functions, oxidative stress and DNA fragmentation in experimental diabetic neuropathy. Life Sci. 80: 1236-1244, 2007 https://doi.org/10.1016/j.lfs.2006.12.036
  21. Beauquis, J., Roig, P., Homo-Delarche, F., De Nicola, A., Saravia, F. Reduced hippocampal neurogenesis and number of hilar neurones in streptozotocin-induced diabetic mice: reversion by antidepressant treatment. Eur J Neurosci. 23(6):1539-1546, 2006 https://doi.org/10.1111/j.1460-9568.2006.04691.x
  22. Beauquis, J., Saravia, F., Coulaud, J., Roig, P., Dardenne, M., Homo-Delarche, F., De Nicola, A. Prominently decreased hippocampal neurogenesis in a spontaneous model of type 1 diabetes, the nonobese diabetic mouse. Exp Neurol. 210(2):359-367, 2008 https://doi.org/10.1016/j.expneurol.2007.11.009
  23. Jang, M.H., Chang, H.K., Shin, M.C., Lee, T.H., Kim, Y.P., Kim, E.H., Kim, C.J. Effect of ginseng radix on c-Fos expression in the hippocampus of streptozotocin-induced diabetic rats. J Pharmacol Sci. 91: 149-152, 2003 https://doi.org/10.1254/jphs.91.149
  24. Alvarez, E.O., Beauquis, J., Revsin, Y., Banzan, A.M., Roig, P., De Nicola, A.F., Saravia, F. Cognitive dysfunction and hippocampal changes in experimental type 1 diabetes. Behav Brain Res. 198(1):224-230, 2009 https://doi.org/10.1016/j.bbr.2008.11.001
  25. Saravia, F.E., Beauquis, J., Revsin, Y., Homo-Delarche, F., de Kloet, E.R., De Nicola, A.F. Hippocampal neuropathology of diabetes mellitus is relieved by estrogen treatment. Cell Mol Neurobiol. 26(4-6):943-957, 2006 https://doi.org/10.1007/s10571-006-9096-y
  26. Kuhad, A., Chopra, K. Curcumin attenuates diabetic encephalopathy in rats: behavioral and biochemical evidences. Eur J Pharmacol. 576(1-3):34-42, 2007 https://doi.org/10.1016/j.ejphar.2007.08.001
  27. Kuhad, A., Sethi, R., Chopra, K. Lycopene attenuates diabetes-associated cognitive decline in rats. Life Sci. 83(3-4):128-134, 2008 https://doi.org/10.1016/j.lfs.2008.05.013
  28. Wong, W.W., Puthalakath, H. Bcl-2 family proteins: the sentinels of the mitochondrial apoptosis pathway. IUBMB Life. 60(6):390-397, 2008 https://doi.org/10.1002/iub.51