• 제목/요약/키워드: BADMINTON SHOES

검색결과 3건 처리시간 0.013초

한국형 배드민턴화 개발을 위한 생체역학적 성능평가(I) (Biomechanical Testing and Evaluation for Korean Badminton Shoes Project(I))

  • 박승범;박상균
    • 한국운동역학회지
    • /
    • 제19권1호
    • /
    • pp.149-157
    • /
    • 2009
  • 본 연구의 목적은 한국의 대표적인 배드민턴화(A Type)와 외국 배드민턴 브랜드제품(B Type)의 생체역학적인 변인들을 비교함으로서 한국제품의 착화감과 기능을 향상시켜 세계적인 수준의 배드민턴화 개발에 일조하는데 목적을 두었다. 분석변인들로는 동작 간 신발 안에서 발의 상대적인 움직임, 지면반력과 압력분포, 아웃솔의 마찰력등을 분석하였다. 또한 17명의 피험자를 통한 주관적인 착화감과 기능에 관련된 주관적인 실험이 실시되었다. A Type 배드민턴화의 경우 높은 뒤꿈치의 위치와 밋밋한 뒷굽의 형태로 신발 안에서 뒤꿈치를 잘 잡아주지 못하는 것으로 나타났다. 따라서 A Type 배드민턴화가 약 40%이상 발이 신발 안에서의 미끄러짐 현상이 일어났으며 충격력의 형태나 최대 압력분포도 높게 나타났다. Type A 신발의 경우 Type B와 같이 자연스러운 굴곡이 발의 볼쪽에서 일어나지 않고 전족부근에서 일어났다. 요약을 하면, 두 신발 간에 몇몇 차이점들이 발견되었고 A Type 배드민턴화의 기능을 향상하기 위해서 보완가능 요인들이 제시되었다.

배드민턴화의 굴곡성(Flexibility) 차이가 점프 스매싱 후 언더클리어 동작시 하지에 미치는 영향 (The Effect of Badminton Shoe Forefoot Flexibility during the Under Clear Quick Lunge from a Jump Smashing)

  • 이재훈;손지훈;류재진;이기광;이정호
    • 한국운동역학회지
    • /
    • 제22권1호
    • /
    • pp.105-111
    • /
    • 2012
  • The purpose of this study was to investigate the effect that difference in forefoot of shoe flexibility during the quick lunge from a jump smashing on the lower limbs and the plantar pressure distribution. For this 10 elite badminton players with over 10 years experience and right handed participated. Two kinds of badminton shoes were selected and tested mechanical testing for the forefoot flexibility. Motion analysis, ground reaction forces and plantar pressure distribution were recorded. It was required to conduct lunge movement after jumping smashing as possible as high. Photo sensor was located in 3 meter away from standing position and its height was 40 cm. Subjects were conducted to return original position after touching the sensor as under clear movement as possible as fast. Forefoot stiffness had an effect on shoe peak bending degree and peak bending angular velocity in propulsion phase. Forefoot flexibility had an effect on ankle plantar flexion and knee flexion moment. It appears that joint power on lower limb and peak plantar pressure were not influenced by the flexibility of shoes.

배드민턴화의 미끄럼방지 아웃솔 부착 유무에 따른 생체역학적 요인 패턴비교 (Comparison of Biomechanical Factors on Badminton shoes between Anti-slip outsole and Non anti-slip outsole)

  • 이재훈;장영관;하종규;기재석
    • 대한안전경영과학회지
    • /
    • 제15권4호
    • /
    • pp.153-160
    • /
    • 2013
  • The purpose of this study was to compare biomechanical factors on badminton shoes between anti-slip outsole and non anti-slip outsole. Six subjects participated in this experiment. For three-dimensional analysis, eight cameras (Oqus 3series, Qualisys) were used to acquire raw data, and then the parameters were calculated and analyzed with Visual-3D. In conclusion, the patterns of spent time during side step, and maximum velocities of CoGs were consistent without joint angles of lower extremities in spite of small differences. Those of GRFs, and moment of lower extremities were absolutely consistent. This trend of biomechanical factors was that Y shoe (ante-treatment) was much greater and PS shoe (treatment) was greater than Y shoe (treatment). (That was, Y shoe (ante-treatment) > PS shoe (treatment) >Y shoe (treatment)). The findings of this study showed that anti-slip outsole was effective and brought increasing performance and decreasing injuries. It is suggested that further study of these phenomena will help understand many aspects of human locomotion, including work, performance, fatigue and possible injuries.