• Title/Summary/Keyword: B4C grain

Search Result 340, Processing Time 0.03 seconds

Cutting Performance of Si$_3$N$_4$ Based SiC Ceramic Cutting Tools

  • Kwon, Won-Tae;Kim, Young-Wook
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.388-394
    • /
    • 2004
  • Composites of Si$_3$N$_4$-SiC containing up to 30 wt% of dispersed SiC particles were fabricated via hot-pressing with an oxynitride glass. To determine the effect of sintering time and SiC content on the mechanical properties and the cutting performance, the composites with fixed 8hr-sintering time and 20 wt% SiC content were fabricated and tested. Fracture toughness of the composites increased with increasing sintering time, while the hardness increased as the SiC content increased up to 20 wt%. The hardness of the composites was relatively independent of the grain size and the sintered density. For machining heat-treated AISI4140, the insert with 20 wt% SiC sintered for 8hr showed the longest tool life while the insert with 20 wt% SiC sintered for 12hr showed the longest tool life for machining gray cast iron. An effort was made to relate the mechanical properties, such as hardness, fracture toughness and wear resistance coefficient with the tool life. However, no apparent relationship was found between them. It may be stated that tool life is affected by not only the mechanical properties but also other properties such as surface roughness, density, grian size and the number of the inherent defects in the inserts.

Nutrient Contributions of the Five Meal Components in School Lunch: $Entr{\'{e}}e$, Milk, Vegetable/Fruit, Bread/Grain, and Miscellaneous

  • Wie Seung-Hee;Shanklin Carol W.
    • Journal of Community Nutrition
    • /
    • v.8 no.1
    • /
    • pp.3-8
    • /
    • 2006
  • This retrospective study was designed to evaluate the nutrient contributions of the five meal components of school lunch menus planned for elementary students in two school districts (District A and B) in the Midwestern state of the United States. The 4-week cycle menu was planned for two time periods (Period 1 and Period 2) following guidelines for NuMenus and general menu planning principles. Menu components of planned and served menus for two time periods were analyzed using $Nutri-Kids^{TM}$. No significant differences in the nutrient content of between Periods 1 and 2 were found for District A. District B served significantly more vitamin A and total fat in Period 1 and significantly more calories, iron, vitamin A, protein, and total fat in Period 2 than was planned. The major nutrients provided by the entree component included protein, calories, cholesterol, total fat, saturated fat, and sodium. Milk was an important source of calcium and provided approximately one-third of the total protein and vitamin A in the meal. The vegetable/fruit component was the major source of vitamins A and C. The grain/bread component provided approximately 20% of the carbohydrates among five meal components. The miscellaneous component affected the sodium and fat content of the menus. Menu planners can use the results of this study to enhance their knowledge of the nutrient contributions of each meal component and as inputs for planning menus that meet children's nutritional requirements.

Thermoelectric properties of SiC prepared by refined diatomite (정제 규조토로 합성한 탄화규소의 열전특성)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.596-601
    • /
    • 2020
  • Silicon carbide is considered a potentially useful material for high-temperature electronic devices because of its large band gap energy and p-type or n-type conduction that can be controlled by impurity doping. Accordingly, the thermoelectric properties of -SiC powder prepared by refined diatomite were investigated for high value-added applications of natural diatomite. -SiC powder was synthesized by a carbothermal reduction of the SiO2 in refined diatomite using carbon black. An acid-treatment process was then performed to eliminate the remaining impurities (Fe, Ca, etc.). n-Type semiconductors were fabricated by sintering the pressed powder at 2000℃ for 1~5h in an N2 atmosphere. The electrical conductivity increased with increasing sintering time, which might be due to an increase in carrier concentration and improvement in grain-to-grain connectivity. The carrier compensation effect caused by the remaining acceptor impurities (Al, etc.) in the obtained -SiC had a deleterious influence on the electrical conductivity. The absolute value of the Seebeck coefficient increased with increasing sintering time, which might be due to a decrease in the stacking fault density accompanied by grain or crystallite growth. On the other hand, the power factor, which reflects the thermoelectric conversion efficiency of the present work, was slightly lower than that of the porous SiC semiconductors fabricated by conventional high-purity -SiC powder, it can be stated that the thermoelectric properties could be improved further by precise control of an acid-treatment process.

The Effect of Chemical Composition and Sintering Temperature on The Improvement of Physical Properties of Mn-Zn Ferrites (Mn-Zn ferrite의 성분 및 소결 온도에 따른 물리적 특성의 향상 연구)

  • 고재귀
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.4
    • /
    • pp.269-274
    • /
    • 1995
  • The basic composition of Mn-Zn ferrite was $Mn_{0.631}Zn_{0.316}Fe_{2.053}O_{4}$(specimen A), $Mn_{0.584}Zn_{0.312}Fe_{2.104}O_{4}$(specimen B) and $Mn_{0.538}Zn_{0.308}Fe_{2.154}O_{4}$(specimen C) with additional 0.1 mol % $CaCo_{3}$ and 0.04 mol % $V_{2}O_{5}$. For high per¬meability and acceleration of grain growth, $CaCo_{3}$ and $V_{2}O_{5}$. was added. The mixture of the law materials was calcinated at $950^{\circ}C$ for 3 hours and then milled. The compacts of toroidal type were sintered at different temperature($1250^{\circ}C$, $1300^{\circ}C$, $1350^{\circ}C$) for 2 hours in $N_2$ atmosphere. The effects of the various raw material composition and sintered temperature on the physical properties of Mn-Zn ferrite have been investigated. They turned out to be spinel structure by X-ray diffraction and the size of grain from SEM was from $18\;\mu\textrm{m}\;to\;23\;\mu\textrm{m}$. As the sintering temperature was increased from $1250^{\circ}C$ to $1350^{\circ}C$, the initial permeability and magnetic induction has increased and the both of Q factor and coercive force has decreased. The coercive force and curie temperature were almost the same at each specimen Their values were about 0.45 Oe and $200^{\circ}C$. The frequency of specimen will used in the range from 200 kHz to 2 MHz. The basic composition of $Mn_{0.584}Zn_{0.312}Fe_{2.104}O_{4}$(specimen B) sintered at $1300^{\circ}C$ shows the best results at magnetic induction (Br & Bm).

  • PDF

Effect of In Situ YAG on Microstructure and Properties of the Pressureless-Sintered $SiC-ZrB_2$ Electroconductive Ceramic Composites (상압소결(常壓燒結)한 $SiC-ZrB_2$ 전도성(電導性) 복합체(複合體)의 미세구조(微細構造)와 특성(特性)에 미치는 In Situ YAG의 영향(影響))

  • Shin, Yong-Deok;Ju, Jin-Young
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.11
    • /
    • pp.505-513
    • /
    • 2006
  • The present study investigated the influence of the content of $Al_2O_3+Y_2O_3$ sintering additives on the microstructure, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites. Phase analysis of composites by XRD revealed mostly of ${\alpha}-SiC(4H),\;ZrB_2,\;{\beta}-SiC(15R)$ and In Situ $YAG(Al_5Y_3O_{12})$. The relative density and the flexural strength showed the highest value of 86.8[%] and 203[Mpa] for $SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature respectively. Owing to crack deflection and crack bridging of fracture toughness mechanism, the fracture toughness showed 3.7 and $3.6[MPa{\cdot}m^{1/2}]\;for\;SiC-ZrB_2$ composites with an addition of 8 and 12[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature respectively. Abnormal grain growth takes place during phase transformation from ${\beta}-SiC\;into\;{\alpha}-SiC$ was correlated with In Situ YAG phase by reaction between $Al_2O_3\;and\;Y_2O_3$ additives during sintering. The electrical resistivity showed the lowest value of $6.5{\times}10^{-3}[({\Omega}{\cdot}cm]$ for the $SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature. The electrical resistivity of the $SiC-ZrB_2$ composites was all positive temperature coefficient(PTCR) in the temperature ranges from $25[^{\circ}C]\;to\;700[^{\circ}C]$. The resistance temperature coefficient showed the highest value of $3.53{\times}10^{-3}/[^{\circ}C]\;for\;SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid in the temperature ranges from $25[^{\circ}C]\;to\;700[^{\circ}C]$. In this paper, it is convinced that ${\beta}-SiC$ based electroconductive ceramic composites for heaters or ignitors can be manufactured by pressureless sintering.

The Effect of Additive Co on the Magnetic Properties of Fe3B/Nd2Fe14B Magnets

  • Yang, Choong-Jin;Park, Eoun-Byung;Hwang, Yong-Soon;Kim, Eng-Chan
    • Journal of Magnetics
    • /
    • v.4 no.2
    • /
    • pp.60-64
    • /
    • 1999
  • The addition of Co into $Nd_4Fe_{77.5-x}Co_x(HfGa)_yB_{18.5}(0$\leq$x$\leq$5, y=0, 0.5)4 was found to enhance the magnetic properties of $Fe_3B/Nd_2Fe_{14}B$ nanocomposite magnets. The enhancement resulted from the fact that Co retarded the crystallization of $\alpha$-Fe or Fe3B but accelerated that $Nd_2Fe_{14}B$. The decreased interval between the onset of crystallization temperature of Fe3B and $Nd_2Fe_{14}B$. phases enabled the grain growth of each phase to be uniform dufing a post annealing of the melt spun ribbons. The addition of 3~5 at. % Co into ternary composition $Md_4Fe_{77.5}B_{18.5}$ increased the coercivity (iHc) from 3.27 to 3.54 kOe with the enhanced remanence value (4$\pi$Mr) around 11.54 kG. From the ribbon magnets of Nd4Fe71.5Co5Hf0.5B18.5 made at 26 m/sec and annealed at 68$0^{\circ}C$ for 10 min, the magnetic properties of Br=11.54 kG, iHc=3.54 kOe, and (BH)max=14.35 MGOe were obtained from volume production line.

  • PDF

Diffraction Characteristics of Mechanically Alloyed Nanocrystalline FeAl (기계적합금화한 FeAl 나노결정립의 회절특성)

  • Choi, Keun-Seob;Kim, Do-Hyang;Hong, Kyung-Tae
    • Applied Microscopy
    • /
    • v.27 no.4
    • /
    • pp.473-481
    • /
    • 1997
  • Disorder-order transformation of nanocrystalline FeAl have been investigated by a combination of electron and X-ray diffraction analysis including high resolution electron microscopy and differential scanning calorimetry. Fe-50at.%Al powders mechanically alloyed for 90 hours consist of $5\sim10$ nm size grains haying either disordered b.c.c. structure or amorphous structure. X-ray and electron diffraction of mechanically alloyed FeAl powders show that disorder-order transformation occurs at the temperature range of $300^{\circ}C\sim320^{\circ}C$. Such a low-temperature ordering behavior exhibiting an exothermic reaction is attributable to the nm-scale grain structure with a large amount of defects accumulated during mechanical alloying process.

  • PDF

Electromigratoin and thermal fatigue in Cu mentallization for ULSI (고집적용 구리배선의 electromigration 및 thermal fatigue 연구)

  • Kim Y.H.;Park Y.B;Monig R.;Volkert C.A.;Joo Y.C
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.1 s.34
    • /
    • pp.53-58
    • /
    • 2005
  • We researched damage formation and failure mechanism under DC(direct current) and AC(alternative current) in order to estimate reliability of Cu interconnects in ULSI. Higher current density and temperature induces more short TTF(time to failure) during interconnects carry DC. Measurement reveals that Cu electromigration has activation energy of 0.96eV and current density exponent value of 4. Thermal fatigue is occurred under DC, and higher frequency and ${\Delta}$T value gives more severe damage during interconnects carry AC Through failure morphology analysis with respect to texture, we observed that damages had grown widely and facetted grains had appeared in (100)grain but damages in (111) had grown thickness direction of line and had induced a failure rapidly.

  • PDF

Coercivity Enhancement in Nd2Fe14B Permanent Magnetic Powders through Rotating Diffusion Process with DyHx Powders

  • Choi, Moon-Hee;Yu, Ji-Hun;Kim, Dong-Hwan;Kim, In-Bae;Kim, Yang-Do
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.342-349
    • /
    • 2011
  • [ $Nd_2Fe_{14}B$ ]permanent magnetic powders ($_iH_c$ = 9.2 kOe, $B_r$ = 12.2 kG) were produced by HDDR process. Their coercivity was enhanced to 12.6 kOe through the grain boundary diffusion process with dysprosium hydride ($DyH_x$). $DyH_x$ diffusion process was optimized through rotating diffusion process, resulting in distinct phases rich in Nd and Dy observable by field emission scanning microscopy and transmission electron microscopy. The mechanism of coercivity enhancement that resulted in restrain the coupling effect between $Nd_2Fe_{14}B$ grains is also discussed.

A Study on the Dielectric Properties of $SrTiO_3$ Sintered Body Synthesized by Oxalate Method (수산염법으로 합성한 $SrTiO_3$ 소결체의 유전특성에 관한 연구)

  • 김병호;이만규;김석우
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.3
    • /
    • pp.215-224
    • /
    • 1991
  • The synthesis of SrTiO3 powders having high purity and homogeneous submicron particle size was attempted by the oxalate method. The microstructure and dielectric properties of SrTiO3 based boundary layer capacitor (BLC) were investigated. Strontium titanyl oxalate[SrTiO(C2O4)2.4H2O] was prepared from the mixing solution of (Sr, Ti) using oxalic acid(H2C2O4) as a precipitating agent at 8$0^{\circ}C$. The crystalline SrTiO3 powder was obtained by thermal decomposition of the precipitate above $600^{\circ}C$. The crystalline SrTiO3 powder containing Nb2O5 as a dopant, TiO2 and SiO2 as additives was sintered at 1360~144$0^{\circ}C$ in the reducing atmosphere to get semiconductive SrTiO3. Insulating material containing PbO-Bi2O3-B2O3 frit was printed on the sintered semiconductive SrTiO3 and fired at 120$0^{\circ}C$ for 2h to get the grain boundary diffusion.

  • PDF